7 research outputs found
Membrane androgen receptor activation triggers down-regulation of PI-3K/Akt/NF-kappaB activity and induces apoptotic responses via Bad, FasL and caspase-3 in DU145 prostate cancer cells
<p>Abstract</p> <p>Background</p> <p>Recently we have reported membrane androgen receptors-induced apoptotic regression of prostate cancer cells regulated by Rho/ROCK/actin signaling. In the present study we explored the specificity of these receptors and we analyzed downstream effectors controlling survival and apoptosis in hormone refractory DU145-prostate cancer cells stimulated with membrane androgen receptor-selective agonists.</p> <p>Results</p> <p>Using membrane impermeable conjugates of serum albumin covalently linked to testosterone, we show here down-regulation of the activity of pro-survival gene products, namely PI-3K/Akt and NF-κB, in DU145 cells. Testosterone-albumin conjugates further induced FasL expression. A FasL blocking peptide abrogated membrane androgen receptors-dependent apoptosis. In addition, testosterone-albumin conjugates increased caspase-3 and Bad protein activity. The actin cytoskeleton drug cytochalasin B and the ROCK inhibitor Y-27632 inhibited FasL induction and caspase-3 activation, indicating that the newly identified Rho/Rock/actin signaling may regulate the downstream pro-apoptotic effectors in DU145 cells. Finally, other steroids or steroid-albumin conjugates did not interfere with these receptors indicating testosterone specificity.</p> <p>Conclusion</p> <p>Collectively, our results provide novel mechanistic insights pointing to specific pro-apoptotic molecules controlling membrane androgen receptors-induced apoptotic regression of prostate cancer cells and corroborate previously published observations on the potential use of membrane androgen receptor-agonists as novel anti-tumor agents in prostate cancer.</p
Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20
Background
Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson’s disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the “weaver” mouse model of PD. Here, we assessed its potential effects on neurogenesis.
Methods
We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and “weaver” mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20.
Results
Our analysis revealed the existence of a low-rate turnover of dopaminergic neurons in the normal SNpc and showed, using three independent lines of experiments (stereologic cell counts, BrdU and DiI tracing), that the administration of BNN-20 leads to increased neurogenesis in the SNpc and to partial reversal of dopaminergic cell loss. The newly born dopaminergic neurons, that are partially originated from the SEZ, follow the typical nigral maturation pathway, expressing the transcription factor FoxA2. Importantly, the pro-cytogenic effects of BNN-20 were very strong in the SNpc, but were absent in other brain areas such as the cortex or the stem cell niche of the hippocampus. Moreover, although the in vitro assays showed that BNN-20 enhances the differentiation of NSCs towards glia and neurons, its in vivo administration stimulated only neurogenesis.
Conclusions
Our results demonstrate the existence of a neurogenic system in the SNpc that can be manipulated in order to regenerate the depleted dopaminergic cell population in the “weaver” PD mouse model. Microneurotrophin BNN-20 emerges as an excellent candidate for future PD cell replacement therapies, due to its area-specific, pro-neurogenic effects
Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20.
BACKGROUND: Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson's disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the "weaver" mouse model of PD. Here, we assessed its potential effects on neurogenesis. METHODS: We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and "weaver" mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. RESULTS: Our analysis revealed the existence of a low-rate turnover of dopaminergic neurons in the normal SNpc and showed, using three independent lines of experiments (stereologic cell counts, BrdU and DiI tracing), that the administration of BNN-20 leads to increased neurogenesis in the SNpc and to partial reversal of dopaminergic cell loss. The newly born dopaminergic neurons, that are partially originated from the SEZ, follow the typical nigral maturation pathway, expressing the transcription factor FoxA2. Importantly, the pro-cytogenic effects of BNN-20 were very strong in the SNpc, but were absent in other brain areas such as the cortex or the stem cell niche of the hippocampus. Moreover, although the in vitro assays showed that BNN-20 enhances the differentiation of NSCs towards glia and neurons, its in vivo administration stimulated only neurogenesis. CONCLUSIONS: Our results demonstrate the existence of a neurogenic system in the SNpc that can be manipulated in order to regenerate the depleted dopaminergic cell population in the "weaver" PD mouse model. Microneurotrophin BNN-20 emerges as an excellent candidate for future PD cell replacement therapies, due to its area-specific, pro-neurogenic effects
Success Stories and Challenges Ahead in Hematopoietic Stem Cell Gene Therapy: Hemoglobinopathies as Disease Models
Gene therapy is a relatively novel field that amounts to around four
decades of continuous growth with its good and bad moments. Currently,
the field has entered the clinical arena with the ambition to fulfil its
promises for a permanent fix of incurable genetic disorders.
Hemoglobinopathies as target diseases and hematopoietic stem cells
(HSCs) as target cells of genetic interventions had a major share in the
research effort toward efficiently implementing gene therapy. Dissection
of HSC biology and improvements in gene transfer and gene expression
technologies evolved in an almost synchronous manner to a point where
the two fields seem to be functionally intercalated. In this review, we
focus specifically on the development of gene therapy for hemoglobin
disorders and look at both gene addition and gene correction strategies
that may dominate the field of HSC-directed gene therapy in the near
future and transform the therapeutic landscape for genetic diseases.</p>
Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20
Abstract Background Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson’s disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the “weaver” mouse model of PD. Here, we assessed its potential effects on neurogenesis. Methods We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and “weaver” mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. Results Our analysis revealed the existence of a low-rate turnover of dopaminergic neurons in the normal SNpc and showed, using three independent lines of experiments (stereologic cell counts, BrdU and DiI tracing), that the administration of BNN-20 leads to increased neurogenesis in the SNpc and to partial reversal of dopaminergic cell loss. The newly born dopaminergic neurons, that are partially originated from the SEZ, follow the typical nigral maturation pathway, expressing the transcription factor FoxA2. Importantly, the pro-cytogenic effects of BNN-20 were very strong in the SNpc, but were absent in other brain areas such as the cortex or the stem cell niche of the hippocampus. Moreover, although the in vitro assays showed that BNN-20 enhances the differentiation of NSCs towards glia and neurons, its in vivo administration stimulated only neurogenesis. Conclusions Our results demonstrate the existence of a neurogenic system in the SNpc that can be manipulated in order to regenerate the depleted dopaminergic cell population in the “weaver” PD mouse model. Microneurotrophin BNN-20 emerges as an excellent candidate for future PD cell replacement therapies, due to its area-specific, pro-neurogenic effects
Recommendations for Mechanical Thrombectomy in Patients with Acute Ischemic Stroke A Clinical Guide by the Hellenic Stroke Organization
This document presents the consensus recommendations of the Hellenic Stroke Organization which can be of assistance to the treating stroke physicians