21 research outputs found

    Superconducting undulator activities at the European X-ray Free-Electron Laser Facility

    Get PDF
    For more than 5 years, superconducting undulators (SCUs) have been successfully delivering X-rays in storage rings. The European X-Ray Free-Electron Laser Facility (XFEL) plans to demonstrate the operation of SCUs in X-ray free-electron lasers (FELs). For the same geometry, SCUs can reach a higher peak field on the axis with respect to all other available technologies, offering a larger photon energy tunability range. The application of short-period SCUs in a high electron beam energy FEL > 11 GeV will enable lasing at very hard X-rays > 40 keV. The large tunability range of SCUs will allow covering the complete photon energy range of the soft X-ray experiments at the European XFEL without changing electron beam energy, as currently needed with the installed permanent magnet undulators. For a possible continuous-wave (CW) upgrade under discussion at the European XFEL with a lower electron beam energy of approximately 7–8 GeV, SCUs can provide the same photon energy range as available at present with the permanent magnet undulators and electron energies. This paper will describe the potential of SCUs for X-ray FELs. In particular, it will focus on the different activities ongoing at the European XFEL and in collaboration with DESY to allow the implementation of SCUs in the European XFEL in the upcoming years

    FLASH Upgrade for Seeding

    No full text

    Advanced Seeding Methods for Generation of Fully-Coherent Ultra-Short Soft X-Ray Pulses

    No full text
    In this thesis I am going to describe advanced seeding techniques to generate radiation in the region of EUV and soft X-ray and the properties of the generated radiation. I am going to focus on the echo-enabled harmonic generation (EEHG) scheme, recently shown in the soft X-ray region at the FERMI free-electron laser (FEL). I am going to present simulations using the EEHG scheme using the currently installed hardware at sFLASH, the seeding experiment at FLASH, the FEL at DESY, Hamburg. I also consider a possible chicane upgrade for sFLASH and of the laser system to analyze the advantaged of more exotic applications of the EEHG scheme, for example by using two different seedlaser wavelengths. The EEHG scheme is considered for a planned upgrade at FLASH to achieve wavelengths down to 4 nm. I am going to define the needed beamline parameters and study the limitations of the EEHG scheme

    FLASH Upgrad for Seeding

    No full text
    An upgrade for FLASH, the SASE FEL in Hamburg, is planned after 2020 aiming at fulfilling user requirements like fully coherent, variable polarization, and multi-colour pulses. In this proceeding, we focus on the FLASH1 beamline that will be operated in seeded mode at a high repetition rate. In particular, we will present and discuss the proposed seeding schemes for delivering FEL radiation with wavelengths from 60 down to 4 nm

    Optimization and stability of a high-gain harmonic generation seeded oscillator amplifier

    No full text
    The free-electron laser (FEL) community is interested in taking full advantage of the high-repetition-rates of FELs run by superconducting machines while maintaining the spectral properties achieved with external seeding techniques. Since the feasibility of seed lasers operating at a repetition-rate of MHz and with sufficient energy in a useful wavelength range, such as the ultraviolet (UV) range is challenging, a seeded oscillator-amplifier scheme is proposed instead for generation of fully coherent and high-repetition-rate radiation. The process is triggered by an external seed laser while an optical feedback system feeds the radiation back to the entrance of the modulator where it overlaps with the next electron bunch. Downstream from the feedback system, the electron bunches are then used for harmonic generation. We discuss the optimization of dedicated simulations and we investigate the stability of this scheme with numerical simulations. As a result, we address the control of the reflectivity of the resonator as a key parameter to achieve a stable HGHG seeded radiation. Finally, we show the impact of the power fluctuations in the oscillator on the bunching amplitude with analytical and simulated results. The output FEL radiation wavelengths considered are 4.167 nm and 60 nm

    Impact of Electron Beam Energy Chirp on Seeded FELs

    No full text
    Seeded FELs enable the generation of fully coherent, transform-limited and high brightness FEL pulses, as the start-up process is driven by an external coherent light pulse. During the design process of such FELs, it is important to choose carefully the electron beam parameters to guarantee high performance. One of those parameters is the electron beam energy chirp. In this contribution, we show simulation results and we discuss how the electron beam energy chirp affects the final spectrum

    High-Repetition-Rate Seeding Schemes Using a Resonator-Amplifier Setup

    No full text
    The spectral and temporal properties of Free-Electron Lasers (FEL) operating on the basis of self-amplified spontaneous emission (SASE) suffer from the stochastic behavior of the start-up process. Several so-called 'seeding'-techniques using external radiation fields to overcome this limitation have been proposed and demonstrated. The external seed is usually generated by demanding, high-power laser systems, which are not available with a sufficient laser pulse energy at the high repetition rates of superconducting FEL facilities. In this contribution we discuss several seeding schemes that lower the requirements for the used laser systems, enabling seeded operation at high repetition rates by the means of a resonator-amplifier setup

    Study of a Seeded Oscillator-Amplifier FEL

    No full text
    In recent years, there is interest of the Free-Electron Laser (FEL) community in external-seeding techniques such as the Echo-Enabled Harmonic Generation (EEHG) and the High-Gain Harmonic Generation (HGHG). With these techniques, pulses of an improved temporal coherence are generated, but at the same time, they are limited by the repetition rates that seed lasers can currently offer with the required pulse energies. A big challenge is to combine the advantages of seeding schemes with high repetition rates. For this purpose, we study a combination of an oscillator-amplifier. The modulator in the oscillator is used at a long wavelength to modulate the electron beam and an amplifier is operated to extract the FEL radiation of the desired harmonic. This way we can use a seed laser of 10 Hz in a burst mode and a resonator to feedback the radiation at repetition rates of superconducting accelerators instead of using an external seed at these high-repetition rates. In this contribution, we present simulation results of a seeded oscillator-amplifier FEL in an HGHG scheme

    Experimental Test of Longitudinal Space-Charge Amplifier in Optical Range

    No full text
    Longitudinal space-charge effects can act as a driver for short wavelength radiation production in a longitudinal space-charge amplifier (LSCA) *. A single cascade of an LSCA was tested using the hardware of the sFLASH experiment installed at the FEL user facility FLASH (at DESY, Hamburg). Scans of the longitudinal dispersion of the chicane were performed with the tightly focused electron beam for different compression settings, while recording the intensity of the emission from a few-period undulator. We present experimental results and estimates on electron beam properties

    Simulation Studies for a EEHG seeded FEL in the XUV

    No full text
    Echo-enabled harmonic generation (EEHG) is a promising technique for seeded free electron lasers (FELs) not only to go down to wavelengths of 4 nm, but also to simplify the schemes that are currently used to achieve a similar wavelength range (double cascade HGHG). Thus a study optimizing the EEHG performance in the wavelength range from 60 to §I{4}{nm} has been performed. The more critical working point, at 4 nm, is here analyzed in terms of seed laser energy stability for two different seed laser frequencies: visible and UV
    corecore