30 research outputs found

    Visual learning induces changes in resting-state fMRI multivariate pattern of information

    Get PDF
    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity

    Predicting Overall Survival Time in Glioblastoma Patients Using Gradient Boosting Machines Algorithm and Recursive Feature Elimination Technique

    No full text
    Despite advances in tumor treatment, the inconsistent response is a major challenge among glioblastoma multiform (GBM) that lead to different survival time. Our aim was to integrate multimodal MRI with non-supervised and supervised machine learning methods to predict GBM patients’ survival time. To this end, we identified different compartments of the tumor and extracted their features. Next, we applied Random Forest-Recursive Feature Elimination (RF-RFE) to identify the most relevant features to feed into a GBoost machine. This study included 29 GBM patients with known survival time. RF-RFE GBoost model was evaluated to assess the survival prediction performance using optimal features. Furthermore, overall survival (OS) was analyzed using univariate and multivariate Cox regression analyses, to evaluate the effect of ROIs and their features on survival. The results showed that a RF-RFE Gboost machine was able to predict survival time with 75% accuracy. The results also revealed that the rCBV in the low perfusion area was significantly different between groups and had the greatest effect size in terms of the rate of change of the response variable (survival time). In conclusion, not only integration of multi-modality MRI but also feature selection method can enhance the classifier performance

    Neuroplasticity within and between Functional Brain Networks in Mental Training Based on Long-Term Meditation

    No full text
    (1) The effects of intensive mental training based on meditation on the functional and structural organization of the human brain have been addressed by several neuroscientific studies. However, how large-scale connectivity patterns are affected by long-term practice of the main forms of meditation, Focused Attention (FA) and Open Monitoring (OM), as well as by aging, has not yet been elucidated. (2) Using functional Magnetic Resonance Imaging (fMRI) and multivariate pattern analysis, we investigated the impact of meditation expertise and age on functional connectivity patterns in large-scale brain networks during different meditation styles in long-term meditators. (3) The results show that fMRI connectivity patterns in multiple key brain networks can differentially predict the meditation expertise and age of long-term meditators. Expertise-predictive patterns are differently affected by FA and OM, while age-predictive patterns are not influenced by the meditation form. The FA meditation connectivity pattern modulated by expertise included nodes and connections implicated in focusing, sustaining and monitoring attention, while OM patterns included nodes associated with cognitive control and emotion regulation. (4) The study highlights a long-term effect of meditation practice on multivariate patterns of functional brain connectivity and suggests that meditation expertise is associated with specific neuroplastic changes in connectivity patterns within and between multiple brain networks

    Large-scale brain networks account for sustained and transient activity during target detection

    No full text
    Target detection paradigms have been widely applied in the study of human cognitive functions, particularly those associated with arousal, attention, stimulus processing and memory. In EEG recordings, the detection of task-relevant stimuli elicits the P300 component, a transient response with latency around 300 ms. The P300 response has been shown to be affected by the amount of mental effort and learning, as well as habituation. Furthermore, trial-by-trial variability of the P300 component has been associated with inter-stimulus interval, target-to-target interval or target probability; however, understanding the mechanisms underlying this variability is still an open question. In order to investigate whether it could be related to the distinct cortical networks in which coherent intrinsic activity is organized, and to understand the contribution of those networks to target detection processes, we carried out a simultaneous EEG-fMRI study, collecting data from 13 healthy subjects during a visual oddball task. We identified five large-scale networks, that largely overlap with the dorsal attention, the ventral attention, the core, the visual and the sensory-motor networks. Since the P300 component has been consistently associated with target detection, we concentrated on the first two brain networks, the time-course of which showed a modulation with the P300 response as detected in simultaneous EEG recordings. A trial-by-trial EEG-fMRI correlation approach revealed that they are involved in target detection with different functional roles: the ventral attention network, dedicated to revealing salient stimuli, was transiently activated by the occurrence of targets; the dorsal attention network, usually engaged during voluntary orienting, reflected sustained activity, possibly related to search for targets. (C) 2008 Elsevier Inc. All rights reserved

    Combining Multi-Shell Diffusion with Conventional MRI Improves Molecular Diagnosis of Diffuse Gliomas with Deep Learning

    Get PDF
    The WHO classification since 2016 confirms the importance of integrating molecular diagnosis for prognosis and treatment decisions of adult-type diffuse gliomas. This motivates the development of non-invasive diagnostic methods, in particular MRI, to predict molecular subtypes of gliomas before surgery. At present, this development has been focused on deep-learning (DL)-based predictive models, mainly with conventional MRI (cMRI), despite recent studies suggesting multi-shell diffusion MRI (dMRI) offers complementary information to cMRI for molecular subtyping. The aim of this work is to evaluate the potential benefit of combining cMRI and multi-shell dMRI in DL-based models. A model implemented with deep residual neural networks was chosen as an illustrative example. Using a dataset of 146 patients with gliomas (from grade 2 to 4), the model was trained and evaluated, with nested cross-validation, on pre-operative cMRI, multi-shell dMRI, and a combination of the two for the following classification tasks: (i) IDH-mutation; (ii) 1p/19q-codeletion; and (iii) three molecular subtypes according to WHO 2021. The results from a subset of 100 patients with lower grades gliomas (2 and 3 according to WHO 2016) demonstrated that combining cMRI and multi-shell dMRI enabled the best performance in predicting IDH mutation and 1p/19q codeletion, achieving an accuracy of 75 ± 9% in predicting the IDH-mutation status, higher than using cMRI and multi-shell dMRI separately (both 70 ± 7%). Similar findings were observed for predicting the 1p/19q-codeletion status, with the accuracy from combining cMRI and multi-shell dMRI (72 ± 4%) higher than from each modality used alone (cMRI: 65 ± 6%; multi-shell dMRI: 66 ± 9%). These findings remain when we considered all 146 patients for predicting the IDH status (combined: 81 ± 5% accuracy; cMRI: 74 ± 5%; multi-shell dMRI: 73 ± 6%) and for the diagnosis of the three molecular subtypes according to WHO 2021 (combined: 60 ± 5%; cMRI: 57 ± 8%; multi-shell dMRI: 56 ± 7%). Together, these findings suggest that combining cMRI and multi-shell dMRI can offer higher accuracy than using each modality alone for predicting the IDH and 1p/19q status and in diagnosing the three molecular subtypes with DL-based models

    Intermodal sensory image generation: An fMRI analysis

    No full text
    Although both imagery and perception may be related to more than one sensory input, and information coming from different sensory channels is often integrated in a unique mental representation, most recent neuroimaging literature has focused on visual imaging. Contrasting results have been obtained concerning the sharing of the same mechanisms by visual perception and visual imagery, in part due to assessment techniques and to interindividual variability in brain activation. In recent years, an increasing number of researchers have adopted novel neuroimaging techniques in order to investigate intermodal connections in mental imagery and have reported a high degree of interaction between mental imagery and other cognitive functions. In the present study the specific nature of mental imagery was investigated by means of fMRI on a more extensive set of perceptual experiences (shapes, sounds, touches, odours, flavours, self-perceived movements, and internal sensations). Results show that the left middle-inferior temporal area is recruited by mental imagery for all modalities investigated and not only for the visual one, while parietal and prefrontal areas exhibit a more heterogeneous pattern of activation across modalities. The prominent left lateralisation observed for almost all the conditions suggests that verbal cues affect the processes underlying the generation of images
    corecore