81 research outputs found
Leaf senescence in tomato mutants as affected by irradiance and phytohormones
Abstract We explored the interaction between radiation of different wavelength and jasmonic acid (JA) or brassinosteroids (BR) on leaf senescence-induced oxidative stress. Three approaches were used: 1) jasmonic acid insensitive1-1 (jai1-1) and brassinosteroid-deficient [dumpy (dpy)] mutants were treated with red (R) or far-red (FR) radiation; 2) phytochromedeficient aurea (au) and high pigment-1 (hp-1) (radiation exaggerated response) mutants were treated with methyl jasmonate (MeJA) or epibrassinolide (epiBL); and 3) double mutants au jai1-1 and au dpy were produced. Leaf chlorophyll content, lipid peroxidation, and antioxidant enzyme activities were determined. After senescence induction in detached leaves, we verified that the patterns of chlorophyll degradation of hormonal and photomorphogenic mutants were not significantly different in comparison with original cv. Micro-Tom (MT). Moreover, there was no significant change in lipid peroxidation measured as malondialdehyde (MDA) production, as well as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities in the hormonal mutants. Exogenous BR increased CAT and APX activities in MT, au, and hp-1. As concerns the double mutants, severe reduction in H 2 O 2 production which was not accompanied by changes in MDA content, and CAT and APX activities was observed during senescence in au dpy. The results suggest that JA and BR do not participate in light signaling pathway during leaf senescence-induced oxidative stress
Zn Uptake, Physiological Response And Stress Attenuation In Mycorrhizal Jack Bean Growing In Soil With Increasing Zn Concentrations.
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth, nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes.751363-7
- …