58 research outputs found

    Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics

    Get PDF
    This mini-review covers the newly developed biosensoristic and chemosensoristic devices described in recent literature for detection of contaminants in both environmental and food real matrices. Current needs in environmental and food surveillance of contaminants require new simplified, sensitive systems, which are portable and allow for rapid and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical bio/chemosensoristic devices as promising tools with interesting analytical features that can be potentially exploited for innovative on-site and real-time applications for diagnostics and monitoring of environmental and food matrices (e.g., agricultural waters and milk). In near future, suitably developed and implemented bio/chemosensoristic devices will be a new and modern technological solution for the identification of new quality and safety marker indexes as well as for a more proper and complete characterization of abovementioned environmental and food matrices. Integrated bio/chemosensoristic devices can also allow an “holistic approach” that may prove to be more suitable for diagnostics of environmental and food real matrices, where the copresence of more bioactive substances is frequent. Therefore, this approach can be focused on the determination of net effect (mixture effect) of bioactive substances present in real matrices

    Seizure in isolated brain cryptococcoma: Case report and review of the literature

    Get PDF
    Background: Central nervous system (CNS) cryptococcosis is an invasive fungal infection predominantly seen among immunosuppressed patients causing meningitis or meningoencephalitis. Rarely, cryptococcosis can affect immunologically competent hosts with the formation of localized CNS granulomatous reaction, known as cryptococcoma. Common symptoms of CNS cryptococcoma are headaches, consciousness or mental changes, focal deficits, and cranial nerve dysfunction. Rarely, seizures are the only presenting symptom. Case description: We report the case of an immunocompetent patient with a solitary CNS cryptococcoma presenting with a long history of non-responsive generalized seizure who has been successfully operated. Conclusion: CNS cryptococcoma is a rare entity, and in immunocompetent patients, its diagnosis can be challenging. The pathophysiology of lesion-related seizure is discussed along with a review of the pertinent literature

    Lumbar facet joint stabilization for symptomatic spinal degenerative disease: A systematic review of the literature

    Get PDF
    Objective: Lumbar spinal degenerative disease (LSDD), unresponsive to conservative therapy, is commonly treated by surgical decompression and interbody fusion. Since facet joint incompetence has been suggested as responsible for the entire phenomenon of spinal degeneration, facet stabilization can be considered as an alternative technique to treat symptomatic spinal degenerative disease. The purpose of this study was to systematically review the literature for studies utilizing lumbar facet joint fixation techniques for LSDD to assess their safety and efficacy. Methods: A systematic literature review was performed following the preferred reporting items for systematic reviews and meta-analyses statement, with no limits in terms of date of publication. Demographic data, inclusion criteria, clinical and radiological outcome, frequency of adverse events (AEs), and follow-up time were evaluated. Results: A total of 19 studies were included with a total of 1577 patients. The techniques used for facet arthrodesis were Goel intra-articular spacers in 21 patients (5.3%), Facet Wedge in 198 patients (15.8%), facet screws fixation techniques in 1062 patients (52.6%), and facet joints arthroplasty in 296 patients (26.3%). Clinical outcomes were assessed through the evaluation of pain relief and improvement in functional outcome. Radiological outcomes were assessed by the evaluation of proper positioning of instrumentation, solid bony fusion rate, and preservation of disk height. AE's mainly observed were pseudoarthrosis, reoperation, instrumentation displacement/malpositioning/migration, neurological impairment, deep vein thrombosis, and infections. The mean follow-up time ranged from 6 months to 11.7 years. Conclusion: Our data demonstrate that facet joint arthrodesis appears to be effective in managing LSDD. These findings, however, are limited by the small sample size of patients. Accordingly, larger series are needed before formal recommendations can be made

    Official control and self-monitoring: Data agreement report in the integrated food safety system of an Italian dairy chain

    Get PDF
    Abstract The dairy industry's silos is a critical point in the safety and quality control system. However, limited scientific evidence is available on measurement agreement between the milk analyses done by official control bodies and the self-monitoring analyses done by milk processing industries. Milk production data from a milk processing plant were collected for four months and analyzed by an official control body and the dairy company for freezing point, total bacterial count, somatic cell count, and for fat, lactose and protein percentages. Correlation and Bland-Altman analysis showed a good agreement between the two determinations for most of the variables (Spearman's rho > 0.82 for Somatic cell count, Fat% and Protein %), while low agreement was found for total bacterial counts (Spearman's rho =0.78). It was found that the difference between total bacterial counts was influenced by collecting route, time between sampling and analysis, and milk temperature inside the truck tank

    Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications

    No full text
    Nanomaterials are increasingly being used in new products and devices with a great impact on different fields from sensoristics to biomedicine. Biosynthesis of nanomaterials by microorganisms is recently attracting interest as a new, exciting approach towards the development of ‘greener’ nanomanufacturing compared to traditional chemical and physical approaches. This review provides an insight about microbial biosynthesis of nanomaterials by bacteria, yeast, molds, and microalgae for the manufacturing of sensoristic devices and therapeutic/diagnostic applications. The last ten-year literature was selected, focusing on scientific works where aspects like biosynthesis features, characterization, and applications have been described. The knowledge, challenges, and potentiality of microbial-mediated biosynthesis was also described. Bacteria and microalgae are the main microorganism used for nanobiosynthesis, principally for biomedical applications. Some bacteria and microalgae have showed the ability to synthetize unique nanostructures: bacterial nanocellulose, exopolysaccharides, bacterial nanowires, and biomineralized nanoscale materials (magnetosomes, frustules, and coccoliths). Yeasts and molds are characterized by extracellular synthesis, advantageous for possible reuse of cell cultures and reduced purification processes of nanomaterials. The intrinsic variability of the microbiological systems requires a greater protocols standardization to obtain nanomaterials with increasingly uniform and reproducible chemical-physical characteristics. A deeper knowledge about biosynthetic pathways and the opportunities from genetic engineering are stimulating the research towards a breakthrough development of microbial-based nanosynthesis for the future scaling-up and possible industrial exploitation of these promising ‘nanofactories’

    Amperometric Cytosensor for Studying Mitochondrial Interferences Induced by Plasticizers Bisphenol B and Bisphenol A

    No full text
    The widespread presence of plasticizers Bisphenol B (BPB) and Bisphenol A (BPA) in food contact materials, medical equipment, and common household products is a toxicological risk factor for health due to internal exposure after environmental dietary exposure. This work describes the use of an amperometric cytosensor (i.e., a whole cell-based amperometric biosensoristic device) for studying mitochondrial interferences of BPA and BPB (5–100 µg/mL) in the yeast Saccharomyces cerevisiae model following long-term (24 h) exposure (acute toxicity). Percentage interference (%ρ) on yeast aerobic mitochondrial catabolism was calculated after comparison of aerobic respiration of exposed and control S. cerevisiae cell suspensions. Results suggested the hypothesis of a dose-dependent co-action of two mechanisms, namely uncoupling of oxidative phosphorylation and oxidative stress. These mechanisms respectively matched with opposite effects of hyperstimulation and inhibition of cellular respiration. While uncoupling of oxidative phosphorylation and oxidative stress have been previously described as separate effects from in vitro BPA exposure using other biochemical endpoints and biological systems, effects of BPB on cellular aerobic respiration are here reported for the first time. Results highlighted a similar hyperstimulation effect after exposure to 5 µg/mL BPA and BPB. About a 2-fold higher cellular respiration inhibition potency was observed after exposures to 15, 30, and 100 µg/mL BPB compared to BPA. 2,4-Dinitrophenol (2,4-DNP) was used as model uncoupling agent. A time-dependent mechanism of mitochondrial interference was also highlighted

    Field and Remote Sensors for Environmental Health and Food Safety Diagnostics: An Open Challenge

    No full text
    Major foodborne disease outbreaks have clarified the close interconnection and interdependence between the health of humans, animals, and the environment [...

    Application of Electrospun Water-Soluble Synthetic Polymers for Multifunctional Air Filters and Face Masks

    No full text
    The worsening of air quality is an urgent human health issue of modern society. The outbreak of COVID-19 has made the improvement of air quality even more imperative, both for the general achievement of major health gains and to reduce the critical factors in the transmission of airborne diseases. Thus, the development of solutions for the filtration of airborne pollutants is pivotal. Electrospinning has gained wide attention as an effective fabrication technique for preparing ultrafine fibers which are specifically tailored for air filtration. Nevertheless, the utilization of harmful organic solvents is the major barrier for the large-scale applicability of electrospinning. The use of water-soluble synthetic polymers has attracted increasing attention as a ‘green’ solution in electrospinning. We reported an overview of the last five years of the scientific literature on the use of water-soluble synthetic polymers for the fabrication of multifunctional air filters layers. Most of recent studies have focused on polyvinyl alcohol (PVA). Various modifications of electrospun polymers have been also described. The use of water-soluble synthetic polymers can contribute to the scalability of electrospinning and pave the way to innovative applications. Further studies will be required to fully harness the potentiality of these ‘greener’ electrospinning processes

    Diuron in Water: Functional Toxicity and Intracellular Detoxification Patterns of Active Concentrations Assayed in Tandem by a Yeast-Based Probe

    No full text
    A study on the acute and chronic effects of the herbicide diuron was carried out. The test, basing on a yeast cell probe, investigated the interference with cellular catabolism and possible self-detoxification capacity of Saccharomyces cerevisiae. Aerobic respiration was taken as the toxicological end-point. Percentage interference (%r) with cellular respiration was measured in water by increased dissolved O2 concentration (ppm) after exposure to different doses. Interference was calculated through the comparison of respiratory activity of exposed and non-exposed cells. Short-term and long-term (6 and 24 h respectively) exposures were also considered. The test for short-term exposure gave positive %r values except that for 10−6 M (11.11%, 11.76%, 13.33% and 0% for 10−10 M, 10−8 M, 10−7 M and 10−6 M respectively). In the case of long-term exposure the test showed positive %r values, but less effect than short-term exposure until 10−8 M and much higher at 10−6 M (7.41%, 8.82%, 11.76% and 6.06% for 10−10 M, 10−8 M, 10−7 M and 10−6 M respectively). The findings of aerobic respiration as toxicological end-point were in agreement with known mechanisms of toxicity and intracellular detoxification for both the doses and exposure times employed
    • 

    corecore