18 research outputs found

    Performance of Different Analytical Software Packages in Quantification of DNA Methylation by Pyrosequencing

    Get PDF
    BACKGROUND:Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. OBJECTIVE:Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. METHODS:We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. RESULTS:We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. CONCLUSION:The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing

    Subfertility and risk of testicular cancer in the EPSAM case-control study

    Get PDF
    It has been suggested that subfertility and testicular cancer share genetic and environmental risk factors. We studied both subfertility and the strongest known testicular cancer susceptibility gene, the c-KIT ligand (KITLG), whose pathway is involved in spermatogenesis.The EPSAM case-control study is comprised of testicular cancer patients from the Province of Turin, Italy, diagnosed between 1997 and 2008. The present analysis included 245 cases and 436 controls from EPSAM, who were aged 20 years or older at diagnosis/recruitment. The EPSAM questionnaire collected information on factors such as number of children, age at first attempt to conceive, duration of attempt to conceive, use of assisted reproduction techniques, physician-assigned diagnosis of infertility, number of siblings, and self-reported cryptorchidism. Genotyping of the KITLG single nucleotide polymorphism (SNP) rs995030 was performed on the saliva samples of 202 cases and 329 controls.Testicular cancer was associated with the number of children fathered 5 years before diagnosis (odds ratio (OR) per additional child: 0.78, 95% confidence interval (CI): 0.58-1.04) and sibship size (OR per additional sibling: 0.76, 95% CI: 0.66-0.88). When considering the reproductive history until 1 year before diagnosis, attempting to conceive for at least 12 months or fathering a child using assisted reproduction techniques was not associated with the risk of testicular cancer, nor was age at first attempt to conceive or physician-assigned diagnosis of infertility. The SNP rs995030 was strongly associated with risk of testicular cancer (per allele OR: 1.83; 95%CI: 1.26-2.64), but it did not modify the association between number of children and the risk of testicular cancer.This study supports the repeatedly reported inverse association between number of children and risk of testicular cancer, but it does not find evidence of an association for other indicators of subfertility

    MGMT promoter methylation in plasma of glioma patients receiving temozolomide.

    Get PDF
    Promoter methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene plays a role in cellular response to alkylating agents. In the present study aimed to: (i) evaluate the concordance between MGMT promoter methylation status in tumor tissue and plasma; (ii) monitor MGMT promoter methylation status in plasma taken before and during temozolomide treatment; (iii) explore the value of MGMT promoter methylation status in plasma as a prognostic/predictive biomarker in glioma patients. We enrolled 58 patients with histologically confirmed glioma at different grades of malignancy. All patients underwent surgical resection and temozolomide treatment. Paraffin-embedded tumor tissue was available for 48 patients. Blood samples were collected from all patients before temozolomide treatment (baseline) and at each MRI examination for a 12-month period. MGMT promoter methylation status was assessed in both sample types by real time PCR with a specific probe. The frequency of MGMT promoter methylation was 60.4 % in tumor tissue and 41.38 % in plasma. MGMT promoter methylation status was concordant in the two sample types (Kappa = 0.75, 95 % confidence interval (CI) 0.57-0.93; p value <0.001). Overall and progression-free survival were longer in patients with methylated MGMT promoter. Mortality was higher in patients with unmethylated MGMT promoter, whether in tumor tissue [hazard ratio (HR) 2.21; 95 % CI 0.99-4.95] or plasma (HR 2.19; 95 % CI 1.02-4.68). Progression-free survival was shorter in patients with unmethylated MGMT promoter, whether in tissue (HR 2.30; 95 % CI 1.19-4.45) or plasma (HR 1.77; 95 % CI 0.95-3.30). The cumulative incidence of unmethylated MGMT promoter in plasma at baseline was 58 %, and reached virtually 100 % at 12 months. In conclusion MGMT promoter methylation status in tumor tissue and plasma was highly concordant, and both were associated with longer survival, supporting the role of the detection of methylated MGMT promoter in predicting treatment response. However we suggest caution in using plasma as a surrogate of tumor tissue due to possible false-negative results
    corecore