3,597 research outputs found
On a damage-plasticity approach to model concrete failure
A damage-plasticity constitutive model for the description of fracture in
plain concrete is presented. Two approaches, the local model comprising the
adjustment of the softening modulus and the nonlocal model based on spatial
averaging of history variables, are applied to the analysis of a concrete bar
subjected to uniaxial tension and to a three-point bending test. The influence
of mesh size and the decomposition into damage and plasticity components are
discussed. It is shown that for the two examples studied, both approaches
result in mesh-independent results. However, the nonlocal model, which relies
on spatial averaging of history variables, exhibits sensitivity with respect to
boundary conditions, which requires further studies.Comment: Revised version. Resubmitted to Engineering and Computational
Mechanic
Computing Extensions of Linear Codes
This paper deals with the problem of increasing the minimum distance of a
linear code by adding one or more columns to the generator matrix. Several
methods to compute extensions of linear codes are presented. Many codes
improving the previously known lower bounds on the minimum distance have been
found.Comment: accepted for publication at ISIT 0
Experimental Implementation of a Codeword Stabilized Quantum Code
A five-qubit codeword stabilized quantum code is implemented in a seven-qubit
system using nuclear magnetic resonance (NMR). Our experiment implements a good
nonadditive quantum code which encodes a larger Hilbert space than any
stabilizer code with the same length and capable of correcting the same kind of
errors. The experimentally measured quantum coherence is shown to be robust
against artificially introduced errors, benchmarking the success in
implementing the quantum error correction code. Given the typical decoherence
time of the system, our experiment illustrates the ability of coherent control
to implement complex quantum circuits for demonstrating interesting results in
spin qubits for quantum computing
Quantum MDS Codes over Small Fields
We consider quantum MDS (QMDS) codes for quantum systems of dimension
with lengths up to and minimum distances up to . We show how
starting from QMDS codes of length based on cyclic and constacyclic
codes, new QMDS codes can be obtained by shortening. We provide numerical
evidence for our conjecture that almost all admissible lengths, from a lower
bound on, are achievable by shortening. Some additional codes that
fill gaps in the list of achievable lengths are presented as well along with a
construction of a family of QMDS codes of length , where , that
appears to be new.Comment: 6 pages, 3 figure
Leveraging Automorphisms of Quantum Codes for Fault-Tolerant Quantum Computation
Fault-tolerant quantum computation is a technique that is necessary to build
a scalable quantum computer from noisy physical building blocks. Key for the
implementation of fault-tolerant computations is the ability to perform a
universal set of quantum gates that act on the code space of an underlying
quantum code. To implement such a universal gate set fault-tolerantly is an
expensive task in terms of physical operations, and any possible shortcut to
save operations is potentially beneficial and might lead to a reduction in
overhead for fault-tolerant computations. We show how the automorphism group of
a quantum code can be used to implement some operators on the encoded quantum
states in a fault-tolerant way by merely permuting the physical qubits. We
derive conditions that a code has to satisfy in order to have a large group of
operations that can be implemented transversally when combining transversal
CNOT with automorphisms. We give several examples for quantum codes with large
groups, including codes with parameters [[8,3,3]], [[15,7,3]], [[22,8,4]], and
[[31,11,5]]
Temperature and humidity profiles in the atmosphere from spaceborne lasers: A feasibility study
Computer simulations of the differential absorption lidar technique in a space craft for the purpose of temperature and humidity profiling indicate: (1) Current technology applied to O2 and H2O lines in the .7 to .8 micrometers wavelength band gives sufficiently high signal-to-noise ratios (up to 50 for a single pulse pair) if backscattering by aerosol particles is high, i.e. profiling accurate to 2 K for temperature and 10% for humidity should be feasible within the turbid lower troposphere in 1 km layers and with an averaging over approximately 100 pulses. (2) The impact of short term fluctuations in aerosol particle concentration is too big for a one laser system. Only a two laser system firing at a time lag of about 1 millisecond can surmount these difficulties. (3) The finite width of the laser line and the quasi-random shift of this line introduce tolerable, partly systematic errors
The politics of national diversity
On the consequences of the interplay between the diversity of ethnic, national, cultural and linguistic groupings in the Austro-Hungarian Empire
Constructions of Quantum Convolutional Codes
We address the problems of constructing quantum convolutional codes (QCCs)
and of encoding them. The first construction is a CSS-type construction which
allows us to find QCCs of rate 2/4. The second construction yields a quantum
convolutional code by applying a product code construction to an arbitrary
classical convolutional code and an arbitrary quantum block code. We show that
the resulting codes have highly structured and efficient encoders. Furthermore,
we show that the resulting quantum circuits have finite depth, independent of
the lengths of the input stream, and show that this depth is polynomial in the
degree and frame size of the code.Comment: 5 pages, to appear in the Proceedings of the 2007 IEEE International
Symposium on Information Theor
- …
