4,174 research outputs found

    Incident-energy dependence of the effective temperature in heavy-ion collisions

    Get PDF
    We study the behaviour of the effective temperature for K+ in several energy domains. For this purpose, we apply the recently developed SPheRIO code for hydrodynamics in 3+1 dimensions, using both Landau-type compact initial conditions and spatially more spread ones. We show that initial conditions given in small volume, like Landau-type ones, are unable to reproduce the effective temperature together with other data (multiplicities and rapidity distributions). These quantities can be reproduced altogether only when using a large initial volume with an appropriate velocity distribution

    Towards Pure Spinor Type Covariant Description of Supermembrane -- An Approach from the Double Spinor Formalism --

    Full text link
    In a previous work, we have constructed a reparametrization invariant worldsheet action from which one can derive the super-Poincare covariant pure spinor formalism for the superstring at the fully quantum level. The main idea was the doubling of the spinor degrees of freedom in the Green-Schwarz formulation together with the introduction of a new compensating local fermionic symmetry. In this paper, we extend this "double spinor" formalism to the case of the supermembrane in 11 dimensions at the classical level. The basic scheme works in parallel with the string case and we are able to construct the closed algebra of first class constraints which governs the entire dynamics of the system. A notable difference from the string case is that this algebra is first order reducible and the associated BRST operator must be constructed accordingly. The remaining problems which need to be solved for the quantization will also be discussed.Comment: 40 pages, no figure, uses wick.sty; v2: a reference added, published versio

    Pure-spinor superstrings in d=2,4,6

    Full text link
    We continue the study of the d=2,4,6 pure-spinor superstring models introduced in [1]. By explicitly solving the pure-spinor constraint we show that these theories have vanishing central charge and work out the (covariant) current algebra for the Lorentz currents. We argue that these super-Poincare covariant models may be thought of as compactifications of the superstring on CY_{4,3,2}, and take some steps toward making this precise by constructing a map to the RNS superstring variables. We also discuss the relation to the so called hybrid superstrings, which describe the same type of compactifications.Comment: 27 page

    Origin of Pure Spinor Superstring

    Full text link
    The pure spinor formalism for the superstring, initiated by N. Berkovits, is derived at the fully quantum level starting from a fundamental reparametrization invariant and super-Poincare invariant worldsheet action. It is a simple extension of the Green-Schwarz action with doubled spinor degrees of freedom with a compensating local supersymmetry on top of the conventional kappa-symmetry. Equivalence to the Green-Schwarz formalism is manifest from the outset. The use of free fields in the pure spinor formalism is justified from the first principle. The basic idea works also for the superparticle in 11 dimensions.Comment: 21 pages, no figure; v2: refs. adde

    On Fermionic T-duality of Sigma modes on AdS backgrounds

    Full text link
    We study the fermionic T-duality symmetry of integrable Green-Schwarz sigma models on AdS backgrounds. We show that the sigma model on AdS5×S1AdS_5\times S^1 background is self-dual under fermionic T-duality. We also construct new integrable sigma models on AdS2×CPnAdS_2\times CP^n. These backgrounds could be realized as supercosets of SU supergroups for arbitrary nn, but could also be realized as supercosets of OSp supergroups for n=1,3n=1,3. We find that the supercosets based on SU supergroups are self-dual under fermionic T-duality, while the supercosets based on OSp supergroups are not. However, the reasons of OSp supercosets being not self-dual under fermionic T-duality are different. For OSp(62)OSp(6|2) case, corresponding to AdS2×CP3AdS_2\times CP^3 background, the failure is due to the singular fermionic quadratic terms, just like AdS4×CP3AdS_4\times CP^3 case. For OSp(32)OSp(3|2) case, the failure is due to the shortage of right number of κ\kappa-symmetry to gauge away the fermionic degrees of freedom, even though the fermionic quadratic term is not singular any more. More general, for the supercosets of the OSp supergroups with superalgebra B(n,m)B(n,m), including AdS2×S2nAdS_2\times S^{2n} and AdS4×S2nAdS_4\times S^{2n} backgrounds, the sigma models are not self-dual under fermionic T-duality as well, obstructed by the κ\kappa-symmetry.Comment: 17 pages; Clarfications on kappa symmetries, references added;Published versio

    Immunogenomics of Colorectal Tumors: Facts and Hypotheses on an Evolving Saga

    Get PDF
    Different mutational burden only partially explains the different response of MSI and MSS CRCs to immunotherapy. Neoantigen load, as measured using available prediction algorithms, is not sufficiently accurate for implementation into clinical decision making. Abundant immune infiltration in the tumor tissue is likely to have high prognostic value, but not an equally high predictive value in terms of response to immunotherapy. The intrinsic characteristics of MSI and MSS CRCs determine differences in their evolutionary paths, which inevitably influence the way the immune system sculpts tumor clonal and subclonal dynamics. Immunotherapy with immune checkpoint inhibitors is an approved treatment option for a subpopulation of patients with colorectal cancers that display microsatellite instability. However, not all individuals within this subgroup respond to immunotherapy, and molecular biomarkers for effective patient stratification are still lacking. In this opinion article, we provide an overview of the different biological parameters that contribute to rendering colorectal cancers with microsatellite instability potentially sensitive to immunotherapy. We critically discuss the reasons why such parameters have limited predictive value and the implications therein. We also consider that a more informed knowledge of response determinants in this tumor subtype could help understand the mechanisms of immunotherapy resistance in microsatellite stable tumors. We conclude that the dynamic nature of the interactions between cancer and immune cells complicates conventional biomarker development and argue that a new generation of adaptive metrics, borrowed from evolutionary genetics, may improve the effectiveness and reliability of clinical decision making
    corecore