6,982 research outputs found

    Relating Green-Schwarz and Extended Pure Spinor Formalisms by Similarity Transformation

    Full text link
    In order to gain deeper understanding of pure-spinor-based formalisms of superstring, an explicit similarity transformation is constructed which provides operator mapping between the light-cone Green-Schwarz (LCGS) formalism and the extended pure spinor (EPS) formalism, a recently proposed generalization of the Berkovits' formalism in an enlarged space. By applying a systematic procedure developed in our previous work, we first construct an analogous mapping in the bosonic string relating the BRST and the light-cone formulations. This provides sufficient insights and allows us to construct the desired mapping in the more intricate case of superstring as well. The success of the construction owes much to the enlarged field space where pure spinor constraints are removed and to the existence of the ``B-ghost'' in the EPS formalism.Comment: 37pages, no figur

    An Introduction to the Covariant Quantization of Superstrings

    Get PDF
    We give an introduction to a new approach to the covariant quantization of superstrings. After a brief review of the classical Green--Schwarz superstring and Berkovits' approach to its quantization based on pure spinors, we discuss our covariant formulation without pure spinor constraints. We discuss the relation between the concept of grading, which we introduced to define vertex operators, and homological perturbation theory, and we compare our work with recent work by others. In the appendices, we include some background material for the Green-Schwarz and Berkovits formulations, in order that this presentation be self contained.Comment: LaTex, 23 pp. Contribution to the Proceedings of the Workshop in String Theory, Leuven 2002, some references added and a comment on ref. [16

    Comments on BRST quantization of strings

    Full text link
    The BRST quantization of strings is revisited and the derivation of the path integral measure for scattering amplitudes is streamlined. Gauge invariances due to zero modes in the ghost sector are taken into account by using the Batalin-Vilkovisky formalism. This involves promoting the moduli of Riemann surfaces to quantum mechanical variables on which BRST transformations act. The familiar ghost and antighost zero mode insertions are recovered upon integrating out auxiliary fields. In contrast to the usual treatment, the gauge-fixed action including all zero mode insertions is BRST invariant. Possible anomalous contributions to BRST Ward identities due to boundaries of moduli space are reproduced in a novel way. Two models are discussed explicitly: bosonic string theory and topological gravity coupled to the topological A-model.Comment: 23 pages, latex; v2: typos fixed, footnote and reference adde

    Towards Pure Spinor Type Covariant Description of Supermembrane -- An Approach from the Double Spinor Formalism --

    Full text link
    In a previous work, we have constructed a reparametrization invariant worldsheet action from which one can derive the super-Poincare covariant pure spinor formalism for the superstring at the fully quantum level. The main idea was the doubling of the spinor degrees of freedom in the Green-Schwarz formulation together with the introduction of a new compensating local fermionic symmetry. In this paper, we extend this "double spinor" formalism to the case of the supermembrane in 11 dimensions at the classical level. The basic scheme works in parallel with the string case and we are able to construct the closed algebra of first class constraints which governs the entire dynamics of the system. A notable difference from the string case is that this algebra is first order reducible and the associated BRST operator must be constructed accordingly. The remaining problems which need to be solved for the quantization will also be discussed.Comment: 40 pages, no figure, uses wick.sty; v2: a reference added, published versio

    A New First Class Algebra, Homological Perturbation and Extension of Pure Spinor Formalism for Superstring

    Full text link
    Based on a novel first class algebra, we develop an extension of the pure spinor (PS) formalism of Berkovits, in which the PS constraints are removed. By using the homological perturbation theory in an essential way, the BRST-like charge QQ of the conventional PS formalism is promoted to a bona fide nilpotent charge Q^\hat{Q}, the cohomology of which is equivalent to the constrained cohomology of QQ. This construction requires only a minimum number (five) of additional fermionic ghost-antighost pairs and the vertex operators for the massless modes of open string are obtained in a systematic way. Furthermore, we present a simple composite "bb-ghost" field B(z)B(z) which realizes the important relation T(z)={Q^,B(z)}T(z) = \{\hat{Q}, B(z)\} , with T(z)T(z) the Virasoro operator, and apply it to facilitate the construction of the integrated vertex. The present formalism utilizes U(5) parametrization and the manifest Lorentz covariance is yet to be achieved.Comment: 38 pages, no figure. Proof of triviality of delta-homology improved and a reference adde

    Origin of Pure Spinor Superstring

    Full text link
    The pure spinor formalism for the superstring, initiated by N. Berkovits, is derived at the fully quantum level starting from a fundamental reparametrization invariant and super-Poincare invariant worldsheet action. It is a simple extension of the Green-Schwarz action with doubled spinor degrees of freedom with a compensating local supersymmetry on top of the conventional kappa-symmetry. Equivalence to the Green-Schwarz formalism is manifest from the outset. The use of free fields in the pure spinor formalism is justified from the first principle. The basic idea works also for the superparticle in 11 dimensions.Comment: 21 pages, no figure; v2: refs. adde

    Ghost constraints and the covariant quantization of the superparticle in ten dimensions

    Get PDF
    We present a modification of the Berkovits superparticle. This is firstly in order to covariantly quantize the pure spinor ghosts, and secondly to covariantly calculate matrix elements of a generic operator between two states. We proceed by lifting the pure spinor ghost constraints and regaining them through a BRST cohomology. We are then able to perform a BRST quantization of the system in the usual way, except for some interesting subtleties. Since the pure spinor constraints are reducible, ghosts for ghosts terms are needed, which have so far been calculated up to level 4. Even without a completion of these terms, we are still able to calculate arbitrary matrix elements of a physical operator between two physical states.Comment: 38 pages, Latex, no figures. Published versio

    11D supergravity at O(l3){\cal O}(l^3)

    Full text link
    We compute certain spinorial cohomology groups controlling possible supersymmetric deformations of eleven-dimensional supergravity up to order l3l^3 in the Planck length. At O(l){\cal O}(l) and O(l2){\cal O}(l^2) the spinorial cohomology groups are trivial and therefore the theory cannot be deformed supersymmetrically. At O(l3){\cal O}(l^3) the corresponding spinorial cohomology group is generated by a nontrivial element. On an eleven-dimensional manifold MM such that p1(M)≠0p_1(M)\neq 0, this element corresponds to a supersymmetric deformation of the theory, which can only be redefined away at the cost of shifting the quantization condition of the four-form field strength.Comment: 10 pages, 1 figure. v2: references adde

    Robustness Analysis for Terminal Phases of Re-entry Flight

    Get PDF
    Advancements in the current practices used in robustness analysis for FCS design refinement by introducing a method that takes into account nonlinear effects of multiple uncertainties over the whole trajectory, to be used before robustness is finally assessed with MC analysis has been reported. Current practice in FCS robustness analysis for this kind of application mainly relies on the theory of linear time-invariant (LTI) systems. The method delivers feedback on the causes of requirement violation and adopts robustness criteria directly linked to the original mission or system requirements, such as those employed in MC analyses. The nonlinear robustness criterion proposed in the present work is based on the practical stability and/or finite time stability concepts. The practical stability property improves the accuracy in robustness evaluation with respect to frozen-time approaches, thus reducing the risk of discovering additional effects during robustness verification with Monte Carlo techniques
    • …
    corecore