15,473 research outputs found

    The Background Field Method and the Linearization Problem for Poisson Manifolds

    Full text link
    The background field method (BFM) for the Poisson Sigma Model (PSM) is studied as an example of the application of the BFM technique to open gauge algebras. The relationship with Seiberg-Witten maps arising in non-commutative gauge theories is clarified. It is shown that the implementation of the BFM for the PSM in the Batalin-Vilkovisky formalism is equivalent to the solution of a generalized linearization problem (in the formal sense) for Poisson structures in the presence of gauge fields. Sufficient conditions for the existence of a solution and a constructive method to derive it are presented.Comment: 33 pp. LaTex, references and comments adde

    Aspects of Quantum Fermionic T-duality

    Full text link
    We study two aspects of fermionic T-duality: the duality in purely fermionic sigma models exploring the possible obstructions and the extension of the T-duality beyond classical approximation. We consider fermionic sigma models as coset models of supergroups divided by their maximally bosonic subgroup OSp(m|n)/SO(m) x Sp(n). Using the non-abelian T-duality and a non-conventional gauge fixing we derive their fermionic T-duals. In the second part of the paper, we prove the conformal invariance of these models at one and two loops using the Background Field Method and we check the Ward Identities.Comment: 65 pages, 5 figure

    Non-Critical Covariant Superstrings

    Full text link
    We construct a covariant description of non-critical superstrings in even dimensions. We construct explicitly supersymmetric hybrid type variables in a linear dilaton background, and study an underlying N=2 twisted superconformal algebra structure. We find similarities between non-critical superstrings in 2n+2 dimensions and critical superstrings compactified on CY_(4-n) manifolds. We study the spectrum of the non-critical strings, and in particular the Ramond-Ramond massless fields. We use the supersymmetric variables to construct the non-critical superstrings sigma-model action in curved target space backgrounds with coupling to the Ramond-Ramond fields. We consider as an example non-critical type IIA strings on AdS_2 background with Ramond-Ramond 2-form flux.Comment: harvmac, amssym, 46 p

    Super Background Field Method for N=2 SYM

    Full text link
    The implementation of the Background Field Method (BFM) for quantum field theories is analysed within the Batalin-Vilkovisky (BV) formalism. We provide a systematic way of constructing general splittings of the fields into classical and quantum parts, such that the background transformations of the quantum fields are linear in the quantum variables. This leads to linear Ward-Takahashi identities for the background invariance and to great simplifications in multiloop computations. In addition, the gauge fixing is obtained by means of (anti)canonical transformations generated by the gauge-fixing fermion. Within this framework we derive the BFM for the N=2 Super-Yang-Mills theory in the Wess-Zumino gauge viewed as the twisted version of Donaldson-Witten topological gauge theory. We obtain the background transformations for the full BRST differential of N=2 Super-Yang-Mills (including gauge transformations, SUSY transformations and translations). The BFM permits all observables of the supersymmetric theory to be identified easily by computing the equivariant cohomology of the topological theory. These results should be regarded as a step towards the construction of a super BFM for the Minimal Supersymmetric Standard Model.Comment: 34 pages, Latex, JHEP3.cl

    Divisors on elliptic Calabi-Yau 4-folds and the superpotential in F-theory, I

    Full text link
    Each smooth elliptic Calabi-Yau 4-fold determines both a three-dimensional physical theory (a compactification of ``M-theory'') and a four-dimensional physical theory (using the ``F-theory'' construction). A key issue in both theories is the calculation of the ``superpotential''of the theory. We propose a systematic approach to identify these divisors, and derive some criteria to determine whether a given divisor indeed contributes. We then apply our techniques in explicit examples, in particular, when the base B of the elliptic fibration is a toric variety or a Fano 3-fold. When B is Fano, we show how divisors contributing to the superpotential are always "exceptional" (in some sense) for the Calabi-Yau 4-fold X. This naturally leads to certain transitions of X, that is birational transformations to a singular model (where the image of D no longer contributes) as well as certain smoothings of the singular model. If a smoothing exists, then the Hodge numbers change. We speculate that divisors contributing to the superpotential are always "exceptional" (in some sense) for X, also in M-theory. In fact we show that this is a consequence of the (log)-minimal model algorithm in dimension 4, which is still conjectural in its generality, but it has been worked out in various cases, among which toric varieties.Comment: Reference added; 34 pages with 7 figures AmS-TeX version 2.

    Fermionic Wigs for BTZ Black Holes

    Full text link
    We compute the wig for the BTZ black hole, namely the complete non-linear solution of supergravity equations with all fermionic zero modes. We use a "gauge completion" method starting from AdS_3 Killing spinors to generate the gravitinos fields associated to the BH and we compute the back-reaction on the metric. Due to the anticommutative properties of the fermionic hairs the resummation of these effects truncates at some order. We illustrate the technique proposed in a precedent paper in a very explicit and analytical form. We also compute the mass, the angular momentum and other charges with their corrections.Comment: 11 pages, no figure

    Partition Functions of Pure Spinors

    Full text link
    We compute partition functions describing multiplicities and charges of massless and first massive string states of pure-spinor superstrings in 3,4,6,10 dimensions. At the massless level we find a spin-one gauge multiplet of minimal supersymmetry in d dimensions. At the first massive string level we find a massive spin-two multiplet. The result is confirmed by a direct analysis of the BRST cohomology at ghost number one. The central charges of the pure spinor systems are derived in a manifestly SO(d) covariant way confirming that the resulting string theories are critical. A critical string model with N=(2,0) supersymmetry in d=2 is also described.Comment: LaTex, 30 p
    corecore