161 research outputs found

    2-symmetric transformations for 3-manifolds of genus two

    Get PDF
    As previously known, all 3-manifolds of genus two can be represented by edge-coloured graphs uniquely defined by 6-tuples of integers satisfying simple conditions. The present paper describes an ``elementary transformation'' on these 6-tuples which changes the associated graph but does not change the represented manifold. This operation is a useful tool in the classification problem for 3-manifolds of genus two; in fact, it allows to define an equivalence relation on ``admissible'' 6-tuples so that equivalent 6-tuples represent the same manifold. Different equivalence classes can represent the same manifold; however, equivalence classes ``almost always'' contain infinitely many 6-tuples. Finally, minimal representatives of the equivalence classes are described.Comment: 27 pages, 10 figures, to appear on Journal of Combinatorial Theory Series

    TOPOLOGY IN COLORED TENSOR MODELS

    Get PDF
    From a “geometric topology” point of view, the theory of manifold representation by means of edge-colored graphs has been deeply studied since 1975 and many results have been achieved: its great advantage is the possibility of encoding, in any dimension, every PL d-manifold by means of a totally combinatorial tool. Edge-colored graphs also play an important rôle within colored tensor models theory, considered as a possible approach to the study of Quantum Gravity: the key tool is the G-degree of the involved graphs, which drives the 1/N expansion in the higher dimensional tensor models context, exactly as it happens for the genus of surfaces in the two-dimensional matrix model setting. Therefore, topological and geometrical properties of the represented PL manifolds, with respect to the G-degree, have specific relevance in the tensor models framework, show-ing a direct fruitful interaction between tensor models and discrete geometry, via edge-colored graphs. In colored tensor models, manifolds and pseudomanifolds are (almost) on the same footing, since they constitute the class of polyhedra represented by edge-colored Feynman graphs arising in this context; thus, a promising research trend is to look for classification results concerning all pseudomanifolds represented by graphs of a given G-degree. In dimension 4, the goal has already been achieved - via singular 4-manifolds - for all compact PL 4-manifolds with connected boundary up to G-degree 24. In the same dimension, the existence of colored graphs encoding different PL mani-folds with the same underlying TOP manifold, suggests also to investigate the ability of tensor models to accurately reflect geometric degrees of freedom of Quantum Gravity

    Redefining ARDS: a paradigm shift

    Get PDF
    Although the defining elements of “acute respiratory distress syndrome” (ARDS) have been known for over a century, the syndrome was first described in 1967. Since then, despite several revisions of its conceptual definition, it remains a matter of debate whether ARDS is a discrete nosological entity. After almost 60 years, it is appropriate to examine how critical care has modeled this fascinating syndrome and affected patient’s outcome. Given that the diagnostic criteria of ARDS (e.g., increased pulmonary vascular permeability and diffuse alveolar damage) are difficult to ascertain in clinical practice, we believe that a step forward would be to standardize the assessment of pulmonary and extrapulmonary involvement in ARDS to ensure that each patient can receive the most appropriate and effective treatment. The selection of treatments based on arbitrary ranges of PaO2/FiO2 lacks sufficient sensitivity to individualize patient care

    Assessing Cancer Risk from Heavy Metals in Recycling Waste Electrical and Electronic Equipment: Preliminary Results from the WEENMODELS European Life Programme

    Get PDF
    Introduction The growing amount of waste derived from electrical and electronic equipment (WEEE) poses significant challenges to waste management, due to the presence of toxic chemicals with environmental and health implications for the general population and for occupationally-exposed workers. Methods Based on an toxicological and epidemiologic evaluation, we carried out a health risk assessment to evaluate the cancer risk deriving from environmental and occupational exposure to heavy metals released during different WEEE recycling procedures (electronic scrap in blister copper, treatment of metals recovery in copper smelter, treatment of shredding, pyrometallurgical treatment of Li-ion battery). We considered the typical WEEE production in a municipality of 150.0000 inhabitants, carrying out a Life Cycle Assessment. Outdoor (1 square km around a treatment plant) and indoor (for a factory volume of 3200 m3) emissions generated during the WEEE recycling procedures were computed. In particular, we estimated the amount of Cd, Ni and As inhaled by the potentially exposed population. We computed the cancer risk due to inhalation of these heavy metals in residents and workers using the methodology proposed by the California Office of Environmental Health and Hazard Assessment Results For the metals considered, our results showed negligible cancer risk (from 2,21x10-11 to 4,31x10-08) for the general population around the plant. On the converse, occupational exposures linked to specific procedures were associated with a cancer risk of 1,42x10-3 for workers in the shredding procedures mainly due to Ni exposure, and of 4,68x10-4 for workers with electronic scrap and exposed to As. Conclusions Based on our preliminary results from an integrated toxicological and epidemiologic approach, WEEE life cycle may be linked to health risks for workers in the recycling procedures, while it does not seem to adversely affect health of the general population around the treatment plants

    CANCER RISK FROM HEAVY METAL EXPOSURE IN RECYCLING WASTE OF ELECTRICAL AND ELECTRONIC EQUIPMENT: PRELIMINARY RESULTS FROM THE WEEENMODELS EUROPEAN LIFE PROGRAM

    Get PDF
    Background and objectives: When electrical and electronic equipment reaches its end of life, it becomes ‘Waste Electrical and Electronic Equipment’ (WEEE). The growing amount of this type of waste has posed significant challenges to waste management, since WEEE contains a whole range of toxic chemicals having relevant environmental and health implications. The WEEE life cycle may expose the general population and workers to various toxic chemicals, such as heavy metals. We conducted a health risk assessment to evaluate the cancer risk derived from environmental and occupational exposure to trace elements from different recycling procedures (electronic scrap in blister copper, treatment of metals recovery in copper smelter, treatment of shredding, pyrometallurgical treatment of Li-ion battery). We considered the typical production of WEEE in a municipality of 150.0000 inhabitants, where a Life Cycle assessment (LCA) was carried out. Methods: Outdoor (1km2 around a WEEE treatment plant) and indoor (factory volume of 3200m3) emissions generated from the above-mentioned procedures were computed, to perform a health risk assessment for occupationally-exposed workers and for the general population around the plant. Dose of the heavy metals cadmium, nickel, arsenic inhaled by the potentially exposed population was estimated using the values obtained through a toxicological model. Cancer risk due to inhalation was calculated using the method proposed by the California Office of Environmental Health and Hazard Assessment. Results and Conclusions: For the heavy metals considered, generated from WEEE treatment, these preliminary results show negligible cancer risk for the general population. On the converse, some risks may be present for occupational exposures linked to specific procedures (from cancer risk of 1,42x10-3 for men working in shredding procedure and exposed to nickel to cancer risk of 4,68x10- 4 for women working with electronic scrap and exposed to arsenic)

    The role of beta-blocker drugs in critically ill patients: a SIAARTI expert consensus statement

    Get PDF
    Background: The role of β-blockers in the critically ill has been studied, and data on the protective effects of these drugs on critically ill patients have been repeatedly reported in the literature over the last two decades. However, consensus and guidelines by scientific societies on the use of β-blockers in critically ill patients are still lacking. The purpose of this document is to support the clinical decision-making process regarding the use of β-blockers in critically ill patients. The recipients of this document are physicians, nurses, healthcare personnel, and other professionals involved in the patient's care process. Methods: The Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI) selected a panel of experts and asked them to define key aspects underlying the use of β-blockers in critically ill adult patients. The methodology followed by the experts during this process was in line with principles of modified Delphi and RAND-UCLA methods. The experts developed statements and supportive rationales in the form of informative text. The overall list of statements was subjected to blind votes for consensus. Results: The literature search suggests that adrenergic stress and increased heart rate in critically ill patients are associated with organ dysfunction and increased mortality. Heart rate control thus seems to be critical in the management of the critically ill patient, requiring careful clinical evaluation aimed at both the differential diagnosis to treat secondary tachycardia and the treatment of rhythm disturbance. In addition, the use of β-blockers for the treatment of persistent tachycardia may be considered in patients with septic shock once hypovolemia has been ruled out. Intravenous application should be the preferred route of administration. Conclusion: β-blockers protective effects in critically ill patients have been repeatedly reported in the literature. Their use in the acute treatment of increased heart rate requires understanding of the pathophysiology and careful differential diagnosis, as all causes of tachycardia should be ruled out and addressed first

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool
    corecore