3 research outputs found

    Dynamiek van het strand bij Noordwijk aan Zee en Egmond aan Zee en het effect van suppleties

    No full text
    DEZE ENTRY BEVAT ZOWEL DE ORIGINELE RAPPORTAGE (T0-RAPPORT, 2006) ALS HET VERVOLG DAAROP (T1-RAPPORT, 2007). In deze studie beschrijven en analyseren we maandelijks hoogtemetingen uitgevoerd op twee intergetijdestranden langs de Hollandse kust. Naast de wetenschappelijk vragen bij het seizoensgebonden gedrag van het intergetijdestrand richten we ons op vragen omtrent kustbeheer. De kennis over de effecten van strand- en onderwatersuppleties op het intergetijdestrand is beperkt. Het doel van deze studie is daarom meer inzicht te verschaffen in het seizoensgebonden en langjarig gedrag van het intergetijdestrand en het effect van suppleties op deze zone. De stranden hier beschreven zijn dat bij Noordwijk (81.250-82.750), waar in 1998 een onderwatersuppletie is uitgevoerd, en het strand ten zuiden van Egmond (ruwweg 40.100-41.100), waar in de subgetijdezone en op het intergetijdestrand geen ingrepen hebben plaatsgevonden. Van beide intergetijdestranden wordt het seizoensgebonden gedrag bepaald aan de hand van duidelijk gedefinieerde strandparameters. Naast de maandelijkse hoogtemetingen hebben wij gebruik gemaakt van de jaarlijkse JARKUS raaien (raaien loodrecht in zee waarlangs de bodemdiepte wordt gemeten). CONCLUSIES BETREFFENDE HET EFFECT VAN SUPPLETIES Analyse van de hoogtemetingen op het strand en onderwateroever bij Egmond aan Zee tonen aan dat 2 jaar na aanleg van een serie van 8 strandsuppleties en 1 relatief kleine onderwatersuppletie < 1.000.000 m3) het strandvolume toeneemt tot +25^3/m boven het voorspelde niveau zonder suppleties. Ongeveer 5 jaar na aanleg van de onderwatersuppletie (de laatste van de serie) is het strandvolume echter weer op het niveau zoals voorspeld zonder suppleties. De combinatie van 1 strandsuppletie en 1 relatief grote onderwatersuppletie lijkt een vergelijkbaar effect te hebben als de 8 strandsuppletie en 1 kleine onderwatersuppletie. De suppleties (op het strand en onder water) bij Egmond lijken geen eenduidig positieve invloed te hebben op het binnenste brekerzonevolume (tussen -3 m en -0.76 m NAP). De huidige analyse van hoogtemetingen bij Egmond aan Zee toont aan dat het strand geen meetbaar effect ondervindt van suppleties welke ongeveer 1 km noordelijker zijn geplaatst. Analyse van de hoogtemetingen op het strand en onderwateroever bij Noordwijk aan Zee tonen aan dat drie jaar na plaatsing van een relatief grote onderwatersuppletie het strandvolume is toegenomen met +19 m^3/m. Dit is ongeveer 5% van het suppletievolume. Na deze drie jaar neemt het strandvolume niet verder toe. Ongeveer 7 jaar na het aanbrengen van de onderwatersuppletie is het strand volume teruggekeerd naar de voorspelde waarde zonder suppleties. Naast het strandvolume ondervindt ook het binnenste brekerzonevolume bij Noordwijk een positief effect van de onderwatersuppletie. Drie jaar na het aanbrengen van de onderwatersuppletie is het brekerzonevolume ongeveer 16 m^3/m meer dan zonder onderwatersuppletie. Ongeveer 8 jaar na het aanbrengen is het brekerzonevolume teruggekeerd naar de voorspelde waarde zonder suppleties. Onderwatersuppleties hebben vooral een beschermende invloed op het strand en in mindere mate, maar wel aanwezig, een voedende. Dit effect is zichtbaar gedurende 5 tot 7 jaar na aanbrengen van de onderwatersuppletie. In tegenstelling tot het positieve effect bij Noordwijk hebben de (onderwater) suppleties bij Egmond geen effect gehad op het binnenste brekerzonevolume (tussen -3 m en -0.76 m NAP). Redenen voor dit verschil zouden verband kunnen houden met verschillen in suppletie-ontwerp (grootte, vorm, locatie). Nader onderzoek aan de hand van een modelstudie waarin het effect van verschillende suppletie-ontwerpen wordt onderzocht zou hierover meer helderheid kunnen geven. Het effect van onderwatersuppleties op het strand is beperkter dan dat op het MKL-volume.RKZ-166

    Sediment concentrations and Sediment transport in case of Irregular breaking waves

    No full text
    Coastal changes occur mostly as a result of changes in sediment transport along the coast. If at cross-section A, the sediment transport is for any reason larger (or smaller) than at cross-section B, accretion (or erosion) will take place in between the two cross-sections. For prediction of coast-lines in the future, the prediction of the net sediment transport is therefore essential. Various models, such as that of Bijker, Van Rijn, Nielsen, Engelund & Hansen and Ackers & White are available to predict the sediment transport by knowledge of wave height and current strength. The reliability of these models is unknown because data under field conditions are scarce. Only few relations between sediment transport, current velocity and wave height are known. For these reasons a laboratory study was carried out to extend the knowledge of the basic phenomena in morphological processes. The study contains experiments in which sediment concentrations and fluid velocities have been measured in case of irregular breaking waves alone and in combination with a current. Chapter 2 deals with the sediment transport basics. Two types of sediment transport, the longshore and the cross-shore sediment transport are discussed and the objectives of the present experiments are presented. In Chapter 3 the experimental set up is described. The measured parameters, methods and instruments are discussed. The experimental programme of the series A and the series B I and B2 are presented. Chapter 4 covers the experimental results from test series A. The wave characteristics, fluid velocities and the influence of these parameters on the sediment concentration, sediment load and sediment transport are studied. Chapter 5 deals with the experimental results from test series B I and B2. The distribution of the sediment concentrations, fluid velocities, sediment loads and sediment transport rates over a sand bar are studied. In Chapter 6 a comparison is made between the measurements and the sediment transport models by Van Rijn and Bijker. Transport rates, concentration profiles and velocity profiles are compared. In Chapter 7 a list of conclusions and recommendations is presented.Hydraulic EngineeringCivil Engineering and Geoscience

    Measurement errors of instruments for velocity, wave heigt, sand concentration and bed levels in field conditions

    No full text
    Field measurements of hydrodynamics (fluid velocities and wave height), sediment dynamics (sand concentrations) and morphodynamics (bar behaviour) as performed during the COAST3D campaigns at the Egmond site in 1998 and at the Teignmouth site in 1999 inevitably involve the problem of the accuracy of the measured variables. The measurement errors are related to: \u95 the physical size of the instrument including supports, cables, housing for electronics, etc.; \u95 the measurement principle including electronic instability, drift, offset, calibration procedure, sampling size and applicability and validity ranges of the instrument concerned; \u95 the conversion principle including assumptions of applied theories (for example: conversion from fluid pressure to wave height; errors in position of pressure sensor above bed). Information of the measurement errors involved can be obtained by comparing instruments based on different measurement principles under controlled conditions. Recently several studies focussing on hydrodynamics and sand transport in the large scale wave tanks of Delft Hydraulics (The Netherlands) and of the \u91Forschungszentrum Küste\u92 in Hannover (Germany) have been carried out. Various types of instruments have been used to measure fluid velocities, wave heights and sand concentrations during the experiments in the wave tanks. In addition data sets from various field experiments are used to evaluate the performance of the instruments considered. In this note some results of instrument intercomparisons are presented. Furthermore, information of instrument characteristics are given.Sandpit - Coast3
    corecore