73 research outputs found

    Plate-based diversity subset screening generation 2: An improved paradigm for high throughput screening of large compound files

    Get PDF
    High throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time-consuming and costly and the use of subsets as an efficient alternative to screening these large collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity, or biological target focus. Previously we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer

    Isolation and Characterization of a Baculovirus Associated with the Insect Parasitoid Wasp, Cotesia marginiventris, or Its Host, Trichoplusia ni

    Get PDF
    A multiple nucleopolyhedrovirus (MNPV) was isolated from Trichoplusia ni (HĂŒbner) (Lepidoptera: Noctuidae) larvae that had been stung by the parasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). The wild type virus was plaque purified by infecting a Heliothis subflexa (BCIRL- HsAM1) cell line and isolating several clones. The mean estimated genomic size of this virus based on PstI, BstEII, StyI, HindIII restriction profiles was estimated to be 106 ± 2.5 kbp (mean±SE). A clone designated as TnMNPV/CmBCL9 was used in bioassays against several lepidopteran pests and in comparative studies with the baculoviruses AcMNPV, AgMNPV, AfMNPV, PxMNPV and HzSNPV of Autographa califomica, Anticarsia gemmatalis, Anagrapha falcifera, Plutella xylostella, and Helicoverpa zea, respectively. Infectivity studies showed that TnMNPV/CmBCL9 was highly infectious for Heliothis subflexa and T. ni, with an LC50 value 0.07 occlusion bodies/mm2 in both species and also infectious for H. zea and Heliothis virescens with LC50 values of 0.22 and 0.27 occlusion bodies/mm2, respectively. Restriction endonuclease analysis of the isolate and selected baculoviruses revealed profiles that were very similar to AfMNPV but different from the restriction endonuclease profiles of the other baculoviruses. Hybridization studies suggest that the TnMNPV/CmBCL9 was closely related to AfMNPV and AcMNPV-HPP. Further support for this comes from a phylogenetic analysis employing a split-graphs network, comparing the polh, egt, and p10 genes from TnMNPV/CmBCL9 with those from other baculoviruses and suggests that this virus is closely related to the AcMNPV variants, AfMNPV and RoMNPV of Rachiplusia ou

    Model-informed drug development for malaria therapeutics.

    No full text
    Malaria is a critical public health problem resulting in substantial morbidity and mortality, particularly in developing countries. Owing to the development of resistance toward current therapies, novel approaches to accelerate the development efforts of new malaria therapeutics are urgently needed. There have been significant advancements in the development of in vitro and in vivo experiments that generate data used to inform decisions about the potential merit of new compounds. A comprehensive disease-drug model capable of integrating discrete data from different preclinical and clinical components would be a valuable tool across all stages of drug development. This could have an enormous impact on the otherwise slow and resource-intensive process of traditional clinical drug development

    Model-informed drug development for malaria therapeutics.

    Get PDF
    Malaria is a critical public health problem resulting in substantial morbidity and mortality, particularly in developing countries. Owing to the development of resistance toward current therapies, novel approaches to accelerate the development efforts of new malaria therapeutics are urgently needed. There have been significant advancements in the development of in vitro and in vivo experiments that generate data used to inform decisions about the potential merit of new compounds. A comprehensive disease-drug model capable of integrating discrete data from different preclinical and clinical components would be a valuable tool across all stages of drug development. This could have an enormous impact on the otherwise slow and resource-intensive process of traditional clinical drug development
    • 

    corecore