7 research outputs found

    Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: Study protocol for a randomized controlled trial

    Get PDF
    Background: Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. Methods/design: In this study, 206 spontaneously breathing infants born at 24+0-27+6 weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. Discussion: From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. Trial registration: ClinicalTrials.gov identifier: NCT02482766. Registered on 1 June 2015

    Hyaline membrane disease or respiratory distress syndrome? A new approach for an old disease

    No full text
    The term “hyaline membrane disease” refers to the histological aspect of the most frequent pulmonary pathology in preterm newborn patients. The lung of the preterm baby is morphologically and functionally immature. Surfactant deficiency in the immature lungs causes alveolar instability and collapse, capillary edema and the formation of hyaline membrane. Thus, the hyaline membranes are epiphenomena and are not the cause of respiratory failure in infants with immature lungs. This definition is presently used to indicate surfactant deficit alone and should not be used for other causes of respiratory distress. Clinicians prefer to talk of “respiratory distress syndrome” (RDS). Improvement in neonatal treatment has changed the natural course of the illness, its clinical and radiological features and has enabled extremely low birth weight newborns (ELBW) to survive. Alveoli paucity and pulmonary interstitial thickness in ELBW impair gas exchange and may necessitate prolonged ventilation treatment, increasing the risk of ventilator-induced lung injury (VILI) and bronchopulmonary dysplasia (BPD). RDS, therefore, is a complex illness where pulmonary immaturity and surfactant deficit play a role together with other pathological conditions that determine the course of the illness and both short and long-term results.   Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014) · Cagliari (Italy) · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyke

    Lung Ultrasound for Diagnosing Pneumothorax in the Critically Ill Neonate

    No full text
    Objectives: To evaluate the accuracy of lung ultrasound for the diagnosis of pneumothorax in the sudden decompensating patient. Study design: In an international, prospective study, sudden decompensation was defined as a prolonged significant desaturation (oxygen saturation <65% for more than 40 seconds) and bradycardia or sudden increase of oxygen requirement by at least 50% in less than 10 minutes with a final fraction of inspired oxygen ≥0.7 to keep stable saturations. All eligible patients had an ultrasound scan before undergoing a chest radiograph, which was the reference standard. Results: Forty-two infants (birth weight = 1531 ± 812 g; gestational age = 31 ± 3.5 weeks) were enrolled in 6 centers; pneumothorax was detected in 26 (62%). Lung ultrasound accuracy in diagnosing pneumothorax was as follows: sensitivity 100%, specificity 100%, positive predictive value 100%, and negative predictive value 100%. Clinical evaluation of pneumothorax showed sensitivity 84%, specificity 56%, positive predictive value 76%, and negative predictive value 69%. After sudden decompensation, a lung ultrasound scan was performed in an average time of 5.3 ± 5.6 minutes vs 19 ± 11.7 minutes required for a chest radiography. Emergency drainage was performed after an ultrasound scan but before radiography in 9 cases. Conclusions: Lung ultrasound shows high accuracy in detecting pneumothorax in the critical infant, outperforming clinical evaluation and reducing time to imaging diagnosis and drainage

    Enteral Nutrition Tolerance and REspiratory Support (ENTARES) Study in preterm infants: Study protocol for a randomized controlled trial

    Get PDF
    Background: Respiratory distress syndrome (RDS) and feeding intolerance are common conditions in preterm infants and among the major causes of neonatal mortality and morbidity. For many years, preterm infants with RDS have been treated with mechanical ventilation, increasing risks of acute lung injury and bronchopulmonary dysplasia. In recent years non-invasive ventilation techniques have been developed. Showing similar efficacy and risk of bronchopulmonary dysplasia, nasal continuous positive airway pressure (NCPAP) and heated humidified high-flow nasal cannula (HHHFNC) have become the most widespread techniques in neonatal intensive care units. However, their impact on nutrition, particularly on feeding tolerance and risk of complications, is still unknown in preterm infants. The aim of the study is to evaluate the impact of NCPAP vs HHHFNC on enteral feeding and to identify the most suitable technique for preterm infants with RDS. Methods: A multicenter randomized single-blind controlled trial was designed. All preterm infants with a gestational age of 25-29 weeks treated with NCPAP or HHHFNC for RDS and demonstrating stability for at least 48 h along with the compliance with inclusion criteria (age less than 7 days, need for non-invasive respiratory support, suitability to start enteral feeding) will be enrolled in the study and randomized to the NCPAP or HHHFNC arm. All patients will be monitored until discharge, and data will be analyzed according to an intention-to-treat model. The primary outcome is the time to reach full enteral feeding, while parameters of respiratory support, feeding tolerance, and overall health status will be evaluated as secondary outcomes. The sample size was calculated at 141 patients per arm. Discussion: The identification of the most suitable technique (NCPAP vs HHHFNC) for preterm infants with feeding intolerance could reduce gastrointestinal complications, improve growth, and reduce hospital length of stay, thus improving clinical outcomes and reducing health costs. The evaluation of the timing of oral feeding could be useful in understanding the influence that these techniques could have on the development of sucking-swallow coordination. Moreover, the evaluation of the response to NCPAP and HHHFNC could clarify their efficacy as a treatment for RDS in extremely preterm infants. Trial registration: ClinicalTrials.gov, NCT03548324. Registered on 7 June 2018

    Lung recruitment before surfactant administration in extremely preterm neonates with respiratory distress syndrome (IN-REC-SUR-E): a randomised, unblinded, controlled trial

    No full text
    Background: The importance of lung recruitment before surfactant administration has been shown in animal studies. Well designed trials in preterm infants are absent. We aimed to examine whether the application of a recruitment manoeuvre just before surfactant administration, followed by rapid extubation (intubate-recruit-surfactant-extubate [IN-REC-SUR-E]), decreased the need for mechanical ventilation during the first 72 h of life compared with no recruitment manoeuvre (ie, intubate-surfactant-extubate [IN-SUR-E]). Methods: We did a randomised, unblinded, controlled trial in 35 tertiary neonatal intensive care units in Italy. Spontaneously breathing extremely preterm neonates (24 + 0 to 27 + 6 weeks' gestation) reaching failure criteria for continuous positive airway pressure within the first 24 h of life were randomly assigned (1:1) with a minimisation algorithm to IN-REC-SUR-E or IN-SUR-E using an interactive web-based electronic system, stratified by clinical site and gestational age. The primary outcome was the need for mechanical ventilation in the first 72 h of life. Analyses were done in intention-to-treat and per-protocol populations, with a log-binomial regression model correcting for stratification factors to estimate adjusted relative risk (RR). This study is registered with ClinicalTrials.gov, NCT02482766. Findings: Of 556 infants assessed for eligibility, 218 infants were recruited from Nov 12, 2015, to Sept 23, 2018, and included in the intention-to-treat analysis. The requirement for mechanical ventilation during the first 72 h of life was reduced in the IN-REC-SUR-E group (43 [40%] of 107) compared with the IN-SUR-E group (60 [54%] of 111; adjusted RR 0·75, 95% CI 0·57–0·98; p=0·037), with a number needed to treat of 7·2 (95% CI 3·7–135·0). The addition of the recruitment manoeuvre did not adversely affect the safety outcomes of in-hospital mortality (19 [19%] of 101 in the IN-REC-SUR-E group vs 37 [33%] of 111 in the IN-SUR-E group), pneumothorax (four [4%] of 101 vs seven [6%] of 111), or grade 3 or worse intraventricular haemorrhage (12 [12%] of 101 vs 17 [15%] of 111). Interpretation: A lung recruitment manoeuvre just before surfactant administration improved the efficacy of surfactant treatment in extremely preterm neonates compared with the standard IN-SUR-E technique, without increasing the risk of adverse neonatal outcomes. The reduced need for mechanical ventilation during the first 72 h of life might facilitate implementation of a non-invasive respiratory support strategy. Funding: None

    Efficacy of a new technique – INtubate-RECruit-SURfactant-Extubate – “IN-REC-SUR-E” – in preterm neonates with respiratory distress syndrome: study protocol for a randomized controlled trial

    No full text
    corecore