181 research outputs found

    Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)(0.94)Ti-0.06](0.98)O-3

    Get PDF
    The electric-field-induced phase transition was investigated under mechanical confinements in bulk samples of an antiferroelectric perovskite oxide at room temperature. Profound impacts of mechanical confinements on the phase transition are observed due to the interplay of ferroelasticity and the volume expansion at the transition. The uniaxial compressive prestress delays while the radial compressive prestress suppresses it. The difference is rationalized with a phenomenological model of the phase transition accounting for the mechanical confinement.open241

    A Non-Equilibrium Defect-Unbinding Transition: Defect Trajectories and Loop Statistics

    Full text link
    In a Ginzburg-Landau model for parametrically driven waves a transition between a state of ordered and one of disordered spatio-temporal defect chaos is found. To characterize the two different chaotic states and to get insight into the break-down of the order, the trajectories of the defects are tracked in detail. Since the defects are always created and annihilated in pairs the trajectories form loops in space time. The probability distribution functions for the size of the loops and the number of defects involved in them undergo a transition from exponential decay in the ordered regime to a power-law decay in the disordered regime. These power laws are also found in a simple lattice model of randomly created defect pairs that diffuse and annihilate upon collision.Comment: 4 pages 5 figure

    Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics

    Get PDF
    Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula (1-x-y) (Bi1/2 Na1/2) TiO3 -x BaTiO3 -y (K0.5 Na0.5) NbO3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to the ferroelectric state, in contrast to known Pb-containing antiferroelectrics. Hence, the volume change and, in turn, the phase transition can be affected using uniaxial compressive stresses, and the effect on ferroelectricity can thus be assessed. It is found that the 0.94 (Bi1/2 Na1/2) TiO3 -0.05 BaTiO3 -0.01 (K0.5 Na0.5) NbO3 ceramic (largely ferroelectric), with a rhombohedral R3c symmetry, displays large ferroelectric domains, significant ferroelastic deformation, and large remanent electrical polarizations even at a 250 MPa compressive stress. In comparison, the 0.91 (Bi1/2 Na1/2) TiO3 -0.07 BaTiO3 -0.02 (K0.5 Na0.5) NbO3 ceramic (largely nonferroelectric) possesses characteristics of a relaxor ferroelectric ceramic, including a pseudocubic structure, limited ferroelastic deformation, and low remanent polarization. The results are discussed with respect of the proposed antiferroelectric nature of the nonferroelectric state.open291

    Surgeon motivations behind the timing of breast reconstruction in patients requiring postmastectomy radiation therapy

    Get PDF
    OBJECTIVES: Although postmastectomy radiation therapy (PMRT) has been shown to reduce breast cancer burden and improve survival, PMRT may negatively influence outcomes after reconstruction. The goal of this study was to compare current opinions of plastic and reconstructive surgeons (PRS) and surgical oncologists (SO) regarding the optimal timing of breast reconstruction for patients requiring PMRT. METHODS: Members of the American Society of Plastic Surgeons (ASPS), the American Society of Breast Surgeons (ASBS), and the Society of Surgical Oncology (SSO) were asked to participate in an anonymous web-based survey. Responses were solicited in accordance to the Dillman method, and they were analyzed using standard descriptive statistics. RESULTS: A total of 330 members of the ASPS and 348 members of the ASBS and SSO participated in our survey. PRS and SO differed in patient-payor mix (p \u3c 0.01) and practice setting (p \u3c 0.01), but they did not differ by urban versus rural setting (p = 0.65) or geographic location (p = 0.30). Although PRS favored immediate reconstruction versus SO, overall timing did not significantly differ between the two specialists (p = 0.14). The primary rationale behind delayed breast reconstruction differed significantly between PRS and SO (p \u3c 0.01), with more PRS believing that the reconstructive outcome is significantly and adversely affected by radiation. Both PRS and SO cited patient-driven desire to have immediate reconstruction (p = 0.86) as the primary motivation for immediate reconstruction. CONCLUSIONS: Although the optimal timing of reconstruction is controversial between PRS and SO, our study suggests that the timing of reconstruction in PMRT patients is ultimately driven by patient preferences and the desire of PRS to optimize aesthetic outcomes

    Domain switching energies: Mechanical versus electrical loading in La-doped bismuth ferrite-lead titanate

    Get PDF
    The mechanical stress-induced domain switching and energy dissipation in morphotropic phase boundary (1 - x)(Bi(1-y)La(y))FeO(3)-xPbTiO(3) during uniaxial compressive loading have been investigated at three different temperatures. The strain obtained was found to decrease with increasing lanthanum content, although a sharp increase in strain was observed for compositions doped with 7.5 and 10 at. % La. Increased domain switching was found in compositions with decreased tetragonality. This is discussed in terms of the competing influences of the amount of domain switching and the spontaneous strain on the macroscopic behavior under external fields. Comparison of the mechanically and electrically dissipated energy showed significant differences, discussed in terms of the different microscopic interactions of electric field and stress.open10

    Modeling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    Full text link
    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. Exactly we have modified Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic one and the various hysteresis loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films.Comment: 21 pages, 10 figures, sent to Journal of Physics: Condensed Matte
    corecore