62 research outputs found
A Simple Approach of Presampled Modulation Transfer Function Measurement Tested on the Phoenix Nanotom Scanner
In this paper presampled modulation transfer function of the 2D images obtained on the Phoenix Nanotom scanner was investigated with different measurement set-ups. Three parameters were chosen to investigate their influence on modulation transfer function: source-detector distance, tube current and binning mode. A simple method for modulation transfer function determination of digital imaging detectors from edge images was applied. The following results were achieved and briefly discussed: modulation transfer function improves with increase of the source-detector distance, slightly improves with increase of the current and remains constant for different binning modes. All measurements were carried out in University of Applied Sciences Upper Austria at Wels campus
Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI
INTRODUCTION: We analyze our preliminary experience using the PoleStar N20 mobile intraoperative MR (iMR) system as an adjunct for pediatric brain tumor resection. METHODS: We analyzed 11 resections in nine children between 1 month and 17 years old. After resection, we acquired iMR scans to detect residual tumor and update neuronavigation. We compared final iMR interpretation by the neurosurgeon with early postoperative MR interpretation by a neuroradiologist. RESULTS: Patient positioning was straightforward, and image quality (T1 7-min 4-mm sequences) sufficient in all cases. In five cases, contrast enhancement suspect for residual tumor was noted on initial postresection iMR images. In one case, a slight discrepancy with postoperative imaging after 3 months was no longer visible after 1 year. No serious perioperative adverse events related to the PoleStar N20 were encountered, except for transient shoulder pain in two. CONCLUSIONS: Using the PoleStar N20 iMR system is technically feasible and safe for both supra- and infratentorial tumor resections in children of all ages. Their small head and shoulders favor positioning in the magnet bore and allow the field of view to cover more than the area of primary interest, e.g., the ventricles in an infratentorial case. Standard surgical equipment may be used without significant limitations. In this series, the use of iMR leads to an increased extent of tumor resection in 45 % of cases. Correlation between iMR and early postoperative MR is excellent, provided image quality is optimal and interpretation is carefully done by someone sufficiently familiar with the system
- …