87 research outputs found

    In Vitro Photodynamic Therapy with Chlorin e6 Leads to Apoptosis of Human Vascular Smooth Muscle Cells

    Get PDF
    Percutaneous coronary intervention has become the most common and widely implemented method of heart revascularization. However, the development of restenosis remains the major limitation of this method. Photodynamic therapy (PDT) recently emerged as a new and promising method for the prevention of arterial restenosis. Here the efficacy of chlorin e6 in PDT was investigated in vitro using human vascular smooth muscle cells (TG/HA-VSMCs) as one of the cell types crucial in the development of restenosis. PDT-induced cell death was studied on many levels, including annexin V staining, measurement of the generation reactive oxygen species (ROS) and caspase-3 activity, and assessment of changes in mitochondrial membrane potential and fragmentation of DNA. Photosensitization of TG/HA-VSMCs with a 170 μM of chlorin e6 and subsequent illumination with the light of a 672-nm diode laser (2 J/cm2) resulted in the generation of ROS, a decrease in cell membrane polarization, caspase-3 activation, as well as DNA fragmentation. Interestingly, the latter two apoptotic events could not be observed in photosensitized and illuminated NIH3T3 fibroblasts, suggesting different outcomes of the model of PDT in various types of cells. The results obtained with human VSMCs show that chlorin e6 may be useful in the PDT of aerial restenosis, but its efficacy still needs to be established in an animal model

    Timing the multiple cell death pathways initiated by Rose Bengal acetate photodynamic therapy

    Get PDF
    Rose Bengal acetate photodynamic therapy (RBAc–PDT) induced multiple cell death pathways in HeLa cells through ROS and ER stress. Indeed, apoptosis was the first preferred mechanism of death, and it was triggered by at least four different pathways, whose independent temporal activation ensures cell killing when one or several of the pathways are inactivated. Apoptosis occurred as early as 1 h after PDT through activation of intrinsic pathways, followed by activation of extrinsic, caspase-12-dependent and caspase-independent pathways, and by autophagy. The onset of the different apoptotic pathways and autophagy, that in our system had a pro-death role, was timed by determining the levels of caspases 9, 8, 3 and 12; Bcl-2 family; Hsp70; LC3B; GRP78 and phospho-eIF2α proteins. Interestingly, inhibition of one pathway, that is, caspase-9 (Z-LEHD-FMK), caspase-8 (Z-IETD-FMK), pan-caspases (Z-VAD-FMK), autophagy (3-MA) and necrosis (Nec-1), did not impair the activation of the others, suggesting that the independent onset of the different apoptotic pathways and autophagy did not occur in a subordinated manner. Altogether, our data indicate RBAc as a powerful photosensitiser that induces a prolonged cytotoxicity and time-related cell death onset by signals originating from or converging on almost all intracellular organelles. The fact that cancer cells can die through different mechanisms is a relevant clue in the choice and design of anticancer PDT

    Human cardiac tissue in a microperfusion chamber simulating extracorporeal circulation - ischemia and apoptosis studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After coronary artery bypass grafting ischemia/reperfusion injury inducing cardiomyocyte apoptosis may occur. This surgery-related inflammatory reaction appears to be of extreme complexity with regard to its molecular, cellular and tissue mechanisms and many studies have been performed on animal models. However, finding retrieved from animal studies were only partially confirmed in humans. To investigate this phenomenon and to evaluate possible therapies in vitro, adequate human cardiomyocyte models are required. We established a tissue model of human cardiomyocytes preserving the complex tissue environment. To our knowledge human cardiac tissue has not been investigated in an experimental setup mimicking extracorporeal circulation just in accordance to clinical routine, yet.</p> <p>Methods</p> <p>Cardiac biopsies were retrieved from the right auricle of patients undergoing elective coronary artery bypass grafting before cardiopulmonary bypass. The extracorporeal circulation was simulated by submitting the biopsies to varied conditions simulating cardioplegia (cp) and reperfusion (rep) in a microperfusion chamber. Cp/rep time sets were 20/7, 40/13 and 60/20 min. For analyses of the calcium homoeostasis the fluorescent calcium ion indicator FURA-2 and for apoptosis detection PARP-1 cleavage immunostaining were employed. Further the anti-apoptotic effect of carvedilol [10 μM] was investigated by adding into the perfusate.</p> <p>Results</p> <p>Viable cardiomyocytes presented an intact calcium homoeostasis under physiologic conditions. Following cardioplegia and reperfusion a time-dependent elevation of cytosolic calcium as a sign of disarrangement of the calcium homoeostasis occurred. PARP-1 cleavage also showed a time-dependence whereas reperfusion had the highest impact on apoptosis. Cardioplegia and carvedilol could reduce apoptosis significantly, lowering it between 60-70% (p < 0.05).</p> <p>Conclusions</p> <p>Our human cardiac preparation served as a reliable cellular model tool to study apoptosis in vitro. Decisively cardiac tissue from the right auricle can be easily obtained at nearly every cardiac operation avoiding biopsying of the myocardium or even experiments on animals.</p> <p>The apoptotic damage induced by the ischemia/reperfusion stimulus could be significantly reduced by the cold crystalloid cardioplegia. The additional treatment of cardiomyocytes with a non-selective β-blocker, carvedilol had even a significantly higher reduction of apoptotis.</p

    Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optical attenuation coefficient in necrotic cells decreased from 2.2 ± 0.3 mm−1 to 1.3 ± 0.6 mm−1, whereas, in the apoptotic cells, an increase to 6.4 ± 1.7 mm−1 was observed. The results from cultured cells, as presented in this study, indicate the ability of OCT to detect and differentiate between viable, apoptotic, and necrotic cells, based on their attenuation coefficient. This functional supplement to high-resolution OCT imaging can be of great clinical benefit, enabling on-line monitoring of tissues, e.g. for feedback in cancer treatment

    Granzyme B Cleaves Decorin, Biglycan and Soluble Betaglycan, Releasing Active Transforming Growth Factor-β1

    Get PDF
    Objective: Granzyme B (GrB) is a pro-apoptotic serine protease that contributes to immune-mediated target cell apoptosis. However, during inflammation, GrB accumulates in the extracellular space, retains its activity, and is capable of cleaving extracellular matrix (ECM) proteins. Recent studies have implicated a pathogenic extracellular role for GrB in cardiovascular disease, yet the pathophysiological consequences of extracellular GrB activity remain largely unknown. The objective of this study was to identify proteoglycan (PG) substrates of GrB and examine the ability of GrB to release PG-sequestered TGF-b1 into the extracellular milieu. Methods/Results: Three extracellular GrB PG substrates were identified; decorin, biglycan and betaglycan. As all of these PGs sequester active TGF-b1, cytokine release assays were conducted to establish if GrB-mediated PG cleavage induced TGF-b1 release. Our data confirmed that GrB liberated TGF-b1 from all three substrates as well as from endogenous ECM and this process was inhibited by the GrB inhibitor 3,4-dichloroisocoumarin. The released TGF-b1 retained its activity as indicated by the induction of SMAD-3 phosphorylation in human coronary artery smooth muscle cells. Conclusion: In addition to contributing to ECM degradation and the loss of tissue structural integrity in vivo, increase

    CXCR4 expression on circulating pan-cytokeratin positive cells is associated with survival in patients with advanced non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CXC chemokine, CXCL12, and its receptor, CXCR4 promote metastases of a variety of solid tumors, including non-small cell lung cancer (NSCLC). The expression of CXCR4 on tumor cells may represent a critical biomarker for their propensity to metastasize. This study was performed to evaluate the hypothesis that co-expression of pan-cytokeratin and CXCR4 may be a prognostic marker for patients with advanced NSCLC.</p> <p>Methods</p> <p>We evaluated CXCR4 levels on circulating pan-cytokeratin positive cells from patients with NSCLC. NSCLC tumor and metastases were also assessed for the presence of CXCR4.</p> <p>Results</p> <p>Pan-cytokeratin positive cells were increased in the circulation of patients with NSCLC, as compared to normal control subjects. Patients with pan-cytokeratin +/CXCR4+ = 2,500 cells/ml had a significant improvement in median survival when compared with patients with pan-cytokeratin +/CXCR4+ >2,500 cells/ml (not achieved versus 14 weeks). CXCR4 expression was found on NSCLC tumors and at sites of tumor metastasis.</p> <p>Conclusion</p> <p>This study suggests that CXCR4 may be a prognostic marker in NSCLC, and provides hypothesis-generating results, which may be important in determining metastatic potential. In future studies, we will prospectively evaluate the prognostic significance of pan-cytokeratin/CXCR4+ cells, and determine the mechanisms involved in the regulation of CXCR4 expression on tumor cells in a larger patient population.</p

    Serpina3n attenuates granzyme B-mediated decorin cleavage and rupture in a murine model of aortic aneurysm

    Get PDF
    Granzyme B (GZMB) is a proapoptotic serine protease that is released by cytotoxic lymphocytes. However, GZMB can also be produced by other cell types and is capable of cleaving extracellular matrix (ECM) proteins. GZMB contributes to abdominal aortic aneurysm (AAA) through an extracellular, perforin-independent mechanism involving ECM cleavage. The murine serine protease inhibitor, Serpina3n (SA3N), is an extracellular inhibitor of GZMB. In the present study, administration of SA3N was assessed using a mouse Angiotensin II-induced AAA model. Mice were injected with SA3N (0–120 μg/kg) before pump implantation. A significant dose-dependent reduction in the frequency of aortic rupture and death was observed in mice that received SA3N treatment compared with controls. Reduced degradation of the proteoglycan decorin was observed while collagen density was increased in the aortas of mice receiving SA3N treatment compared with controls. In vitro studies confirmed that decorin, which regulates collagen spacing and fibrillogenesis, is cleaved by GZMB and that its cleavage can be prevented by SA3N. In conclusion, SA3N inhibits GZMB-mediated decorin degradation leading to enhanced collagen remodelling and reinforcement of the adventitia, thereby reducing the overall rate of rupture and death in a mouse model of AAA

    Potentiation of the anti-tumour effects of Photofrin®-based photodynamic therapy by localized treatment with G-CSF

    Get PDF
    Photofrin®-based photodynamic therapy (PDT) has recently been approved for palliative and curative purposes in cancer patients. It has been demonstrated that neutrophils are indispensable for its anti-tumour effectiveness. We decided to evaluate the extent of the anti-tumour effectiveness of PDT combined with administration of granulocyte colony-stimulating factor (G-CSF) as well as the influence of Photofrin®and G-CSF on the myelopoiesis and functional activity of neutrophils in mice. An intensive treatment with G-CSF significantly potentiated anti-tumour effectiveness of Photofrin®-based PDT resulting in a reduction of tumour growth and prolongation of the survival time of mice bearing two different tumours: colon-26 and Lewis lung carcinoma. Moreover, 33% of C-26-bearing mice were completely cured of their tumours after combined therapy and developed a specific and long-lasting immunity. The tumours treated with both agents contained more infiltrating neutrophils and apoptotic cells then tumours treated with either G-CSF or PDT only. Importantly, simultaneous administration of Photofrin®and G-CSF stimulated bone marrow and spleen myelopoiesis that resulted in an increased number of neutrophils demonstrating functional characteristics of activation. Potentiated anti-tumour effects of Photofrin®-based PDT combined with G-CSF observed in two murine tumour models suggest that clinical trials using this tumour therapy protocol would be worth pursuing. © 2000 Cancer Research Campaig
    corecore