33 research outputs found

    Optimizing dual energy cone beam CT protocols for preclinical imaging and radiation research

    Get PDF
    Objective: The aim of this work was to investigate whether quantitative dual-energy CT (DECT) imaging is feasible for small animal irradiators with an integrated cone-beam CT (CBCT) system. Methods: The optimal imaging protocols were determined by analyzing different energy combinations and dose levels. The influence of beam hardening effects and the performance of a beam hardening correction (BHC) were investigated. In addition, two systems from different manufacturers were compared in terms of errors in the extracted effective atomic numbers (Z(eff)) and relative electron densities (rho(e)) for phantom inserts with known elemental compositions and relative electron densities. Results: The optimal energy combination was determined to be 50 and 90kVp. For this combination, Z(eff) and r rho(e) can be extracted with a mean error of 0.11 and 0.010, respectively, at a dose level of 60cGy. Conclusion: Quantitative DECT imaging is feasible for small animal irradiators with an integrated CBCT system. To obtain the best results, optimizing the imaging protocols is required. Well-separated X-ray spectra and a sufficient dose level should be used to minimize the error and noise for Z(eff) and rho(e). When no BHC is applied in the image reconstruction, the size of the calibration phantom should match the size of the imaged object to limit the influence of beam hardening effects. No significant differences in Z(eff) and rho(e) errors are observed between the two systems from different manufacturers. Advances in knowledge: This is the first study that investigates quantitative DECT imaging for small animal irradiators with an integrated CBCT system

    Impact of Using Unedited CT-Based DIR-Propagated Autocontours on Online ART for Pancreatic SBRT

    Get PDF
    PURPOSE: To determine the dosimetric impact of using unedited autocontours in daily plan adaptation of patients with locally advanced pancreatic cancer (LAPC) treated with stereotactic body radiotherapy using tumor tracking. MATERIALS AND METHODS: The study included 98 daily CT scans of 35 LAPC patients. All scans were manually contoured (MAN), and included the PTV and main organs-at-risk (OAR): stomach, duodenum and bowel. Precision and MIM deformable image registration (DIR) methods followed by contour propagation were used to generate autocontour sets on the daily CT scans. Autocontours remained unedited, and were compared to MAN on the whole organs and at 3, 1 and 0.5 cm from the PTV. Manual and autocontoured OAR were used to generate daily plans using the VOLO™ optimizer, and were compared to non-adapted plans. Resulting planned doses were compared based on PTV coverage and OAR dose-constraints. RESULTS: Overall, both algorithms reported a high agreement between unclipped MAN and autocontours, but showed worse results when being evaluated on the clipped structures at 1 cm and 0.5 cm from the PTV. Replanning with unedited autocontours resulted in better OAR sparing than non-adapted plans for 95% and 84% plans optimized using Precision and MIM autocontours, respectively, and obeyed OAR constraints in 64% and 56% of replans. CONCLUSION: For the majority of fractions, manual correction of autocontours could be avoided or be limited to the region closest to the PTV. This practice could further reduce the overall timings of adaptive radiotherapy workflows for patients with LAPC

    MICRO-CT MATERIAL INTERPRETATION BY SEGMENTATION AND MULTI-ENERGY DATA ACQUISITION

    Get PDF
    Micro-CT is a 3-D non-invasive high-resolution imaging tool, which is often used for visualizing anatomical features in small animals. Micro-CT generates 3-D grey-scale anatomical images based on X-ray attenuation differences between tissues. The rapid growth in micro-CT imaging systems and recent advances in micro-CT technology have made it an excellent tool for quantifying tissues, based on their CT image intensity alone. In this thesis we have imaged entire rats and quantified their whole-body composition of adipose tissue (fat), lean tissue (organs), and bone using a rapid cone-beam flat-panel micro-CT system. However, this technique is limited in situations where exogenous contrast agents are introduced, due to the similar X-ray attenuation values, which are exhibited by typical contrast agents and cortical bone. By imaging a rat specimen (containing a lead-based vascular contrast) at more than one X ray energy, we have overcome this limitation and decomposed conventional post-reconstructed micro-CT images to form 3-D independent images of vessels, bone and soft-tissue

    SmART-ER imaging and treatment of glioblastoma

    No full text

    Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2

    No full text
    A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo-and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple-and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 +/- 12 cGy and 7.6 +/- 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of +/- 1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan

    Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2

    No full text
    A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo-and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple-and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 +/- 12 cGy and 7.6 +/- 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of +/- 1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan
    corecore