21,210 research outputs found

    An experimental investigation of unstable combustion in solid propellant rocket motors

    Get PDF
    Unstable combustion in solid propellant rocket motors is characterized by high frequency chamber pressure oscillations, often accompanied by changes in the mean burning rate. Experiments with casebonded, cylindrically perforated motors using a polysulfide, ammoniumperchlorate propellant were reproducible as a result of careful manufacturing control and extended propellant curing time. In these motors the oscillations were in the fundamental standing tangential mode and were accompanied by increases in the average burning rate. At sufficiently high pressure levels all firings were stable. Reduction of the operating level led to mild instability. A sufficient further reduction produced a sudden change to maximum instability. Continued reduction in pressure level from this point resulted in a gradual decrease in the degree of instability but it could not be experimentally verified that a low pressure stable region existed. The levels at which these events took place were frequency dependent and generally increased as the tangential frequency was reduced. At a given operating leve1, the instability became less severe when the grain length was reduced below a critical value. Increasing the length above the critical value did not affect the level at which the motors became stable. The pressure levels for stability and for maximum instability moved to lower values with decreases in the propellant grain temperature in a manner not entirely accounted for by the effect of grain temperature on burning rate. Stable, mildly unstable and severely unstable operation was observed throughout the range -80°F to 180°F. The maximum instability decreased with grain temperature

    Portable remote laser sensor for methane leak detection

    Get PDF
    A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal

    Summary of the electromagnetic compatibility evaluation of the proposed satellite power system

    Get PDF
    The effects of the proposed solar power satellite (SPS) operations on electronic equipment and systems by fundamental, harmonic, and intermodulation component emissions from the orbital station; and the fundamental, harmonic, and structural intermodulation emissions from the rectenna site were evaluated. The coupling and affects interactions affecting a wide spectrum of electronic equipment are considered. The primary EMC tasking areas are each discussed separately

    Imaging X-ray spectrometer

    Get PDF
    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging

    Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    Full text link
    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telescope's focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. However, as Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. Here we investigate using the ACIS CCDs themselves as a radiation monitor. We explore the 10-year database to evaluate the CCDs' response to particle radiation and to compare this response with other radiation data and environment models.Comment: 10 pages, 5 figures. To appear in Proc. SPIE vol. 773

    Sacrificial charge and the spectral resolution performance of the Chandra Advanced CCD Imaging Spectrometer

    Get PDF
    Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earth's radiation belts. The ACIS team is continuing to study the properties of the damage with an emphasis on developing techniques to mitigate charge transfer inefficiency (CTI) and spectral resolution degradation. A post-facto CTI corrector has been developed which can effectively recover much of the lost resolution. Any further improvements in performance will require knowledge of the location and amount of sacrificial charge - charge deposited along the readout path of an event which fills electron traps and changes CTI. We report on efforts by the ACIS Instrument team to characterize which charge traps cause performance degradation and the properties of the sacrificial charge seen on-orbit. We also report on attempts to correct X-ray pulseheights for the presence of sacrificial charge.Comment: 9 pages, 7 figures to be published in Proc. SPIE 485

    Lunar sample analysis

    Get PDF
    The surface composition of two samples from the highly shocked, glass-coated lunar basalt (12054) and from four glass-coated fragments from the 1-2 mm (14161) fines were examined by X-ray photoemission spectroscopy to determine whether the agglutination process itself is responsible for the difference between their surface and bulk compositions. Auger electron spectroscopy of glass balls from the 15425 and 74001 fines were analyzed to understand the nature, extent, and behavior of volatile phases associated with lunar volcanism. Initial results indicate that (1) volatiles, in the outer few atomic layers sampled, vary considerably from ball to ball; (2) variability over the surface of individual balls is smaller; (3) the dominant volatiles on the balls are S and Zn; and (4) other volatiles commonly observed are P, Cl, and K

    Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II

    Full text link
    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.Comment: 10 pages, 5 figures, to be published in Proc. SPIE 8443, "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Water Relationships of Kentucky Soils

    Get PDF
    Plant water stress is the most limiting single factor in crop production in Kentucky. It almost always occurs sometime during July and/or August even though it\u27s variability makes it hard to predict. Even though the 1979 growing season was an exception to this generalization the 1980 growing season was a vivid reminder of this fact especially in Western Kentucky
    corecore