496 research outputs found

    Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension

    Get PDF
    AIMS: Renal inflammation, leading to fibrosis and impaired function is a major contributor to the development of hypertension. The NLRP3 inflammasome mediates inflammation in several chronic diseases by processing the cytokines pro-interleukin (IL)-1beta and pro-IL-18. In this study, we investigated whether MCC950, a recently-identified inhibitor of NLRP3 activity, reduces blood pressure (BP), renal inflammation, fibrosis and dysfunction in mice with established hypertension. METHODS AND RESULTS: C57BL6/J mice were made hypertensive by uninephrectomy and treatment with deoxycorticosterone acetate (2.4 mg/day, s.c.) and 0.9% NaCl in the drinking water (1K/DOCA/salt). Normotensive controls were uninephrectomized and received normal drinking water. Ten days later, mice were treated with MCC950 (10 mg/kg/day, s.c.) or vehicle (saline, s.c.) for up to 25 days. BP was monitored by tail-cuff or radiotelemetry; renal function by biochemical analysis of 24-h urine collections; and kidney inflammation/pathology was assessed by real-time PCR for inflammatory gene expression, flow cytometry for leucocyte influx, and Picrosirius red histology for collagen. Over the 10 days post-surgery, 1K/DOCA/salt-treated mice became hypertensive, developed impaired renal function, and displayed elevated renal levels of inflammatory markers, collagen and immune cells. MCC950 treatment from day 10 attenuated 1K/DOCA/salt-induced increases in renal expression of inflammasome subunits (NLRP3, ASC, pro-caspase-1) and inflammatory/injury markers (pro-IL-18, pro-IL-1beta, IL-17A, TNF-alpha, osteopontin, ICAM-1, VCAM-1, CCL2, vimentin), each by 25-40%. MCC950 reduced interstitial collagen and accumulation of certain leucocyte subsets in kidneys of 1K/DOCA/salt-treated mice, including CD206+ (M2-like) macrophages and interferon-gamma-producing T cells. Finally, MCC950 partially reversed 1K/DOCA/salt-induced elevations in BP, urine output, osmolality, [Na+], and albuminuria (each by 20-25%). None of the above parameters were altered by MCC950 in normotensive mice. CONCLUSION: MCC950 was effective at reducing BP and limiting renal inflammation, fibrosis and dysfunction in mice with established hypertension. This study provides proof-of-concept that pharmacological inhibition of the NLRP3 inflammasome is a viable anti-hypertensive strategy

    Micro-scale graded electrodes for improved dynamic and cycling performance of Li-ion batteries

    Get PDF
    Li-ion battery cathodes based on LiFePO4 are fabricated by a layer-by-layer spray printing method with a continuous through thickness gradient of active material, conductive carbon, and binder. Compared with cathodes with the more usual homogeneous distribution, but with the same average composition, both C-rate and capacity degradation performance of the graded electrodes are significantly improved. For example at 2C, graded cathodes with an optimized material distribution have 15% and 31% higher discharge capacities than sprayed uniform or conventional slurry cast uniform cathodes, and capacity degradation rates are 40–50% slower than uniform cathodes at 2C. The improved performance of graded electrodes is shown to derive from a lower charge transfer resistance and reduced polarization at high C-rates, which suggests a more spatially homogeneous distribution of over-potential that leads to a thinner solid electrolyte interphase formation during cycling and sustains improved C-rate and long-term cycling performance

    Control of additive manufacturing for radio frequency devices with spatially varying dielectric properties

    Get PDF
    Additive manufacturing (AM) is increasingly being used to fabricate end-use and high-value-added parts in a range of industries. AM’s ability to create complex geometries and vary the internal composition of a part has enabled the design of many novel devices, including radio frequency (RF) devices that rely on the spatial variation of electromagnetic (EM) properties. However, current AM processes for fabricating complex parts are typically run without any part monitoring or online feedback control, and as a result, the printed parts may be compromised by defects or have poor tolerances. Manufacturing parts in this way also requires extra quality testing since there is no knowledge of their interior quality. For these reasons, introducing process monitoring and corrective action to the AM process has become an important area of research as AM is being used to create safety-critical parts. This work proposes a control algorithm to enable closed-loop control of an EM property, specifically dielectric permittivity, within a print using a fused filament fabrication (FFF) printer. The control system used a split-ring resonator (SRR) to measure the permittivity of printed thermoplastic, and the control action was applied by updating the printed infill density layer to layer. This control system was tested by printing a proof-of-concept graded-index (GRIN) lens with spatially varying permittivity through the lens’ length. The results demonstrate the ability of the controller to follow a constantly varying reference signal, indicating the potential of closed-loop control for improved fabrication of functional RF devices that depend on precise variations in relative permittivity

    Nox2 Oxidase Activity Accounts for the Oxidative Stress and Vasomotor Dysfunction in Mouse Cerebral Arteries following Ischemic Stroke

    Get PDF
    Background and Purpose: Post-ischemic oxidative stress and vasomotor dysfunction in cerebral arteries may increase the likelihood of cognitive impairment and secondary stroke. However, the underlying mechanisms of post-stroke vascular abnormalities, as distinct from those causing primary brain injury, are poorly understood. We tested whether augmented superoxide-dependent dysfunction occurs in the mouse cerebral circulation following ischemia-reperfusion, and evaluated the role of Nox2 oxidase. Methods: Cerebral ischemia was induced in male C57Bl6/J wild-type (WT) and Nox2-deficient (Nox2 -/-) mice by middle cerebral artery occlusion (MCAO; 0.5 h), followed by reperfusion (23.5 h). Superoxide production by MCA was measured by L-012-enhanced chemiluminescence. Nitric oxide (NO) function was assessed in cannulated and pressurized MCA via the vasoconstrictor response to N Ο‰-nitro-L-arginine methyl ester (L-NAME; 100 ΞΌmol/L). Expression of Nox2, the nitration marker 3-nitrotyrosine, and leukocyte marker CD45 was assessed in cerebral arteries by Western blotting. Results: Following ischemia-reperfusion, superoxide production was markedly increased in the MCA of WT, but not Nox2 -/- mice. In WT mice, L-NAME-induced constriction was reduced by ~50% in ischemic MCA, whereas ischemia-reperfusion had no effect on responses to L-NAME in vessels from Nox2 -/- mice. In ischemic MCA from WT mice, expression of Nox2 and 3-nitrotyrosine were ~1.4-fold higher than in the contralateral MCA, or in ischemic or contralateral vessels from Nox2 -/- mice. Vascular CD45 levels were unchanged by ischemia-reperfusion. Conclusions: Excessive superoxide production, impaired NO function and nitrosative stress occur in mouse cerebral arteries after ischemia-reperfusion. These abnormalities appear to be exclusively due to increased activity of vascular Nox2 oxidase

    Fasting triglycerides are positively associated with cardiovascular mortality risk in people with diabetes

    Get PDF
    Aims: We investigated the association of fasting triglycerides with cardiovascular disease (CVD) mortality. Methods and results: This cohort study included US adults from the National Health and Nutrition Examination Surveys from 1988 to 2014. CVD mortality outcomes were ascertained by linkage to the National Death Index records. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of triglycerides for CVD mortality. The cohort included 26 570 adult participants, among which 3978 had diabetes. People with higher triglycerides had a higher prevalence of diabetes at baseline. The cohort was followed up for a mean of 12.0 years with 1492 CVD deaths recorded. A 1-natural-log-unit higher triglyceride was associated with a 30% higher multivariate-adjusted risk of CVD mortality in participants with diabetes (HR, 1.30; 95% CI, 1.08–1.56) but not in those without diabetes (HR, 0.95; 95% CI, 0.83–1.07). In participants with diabetes, people with high triglycerides (200–499β€…mg/dL) had a 44% (HR, 1.44; 95% CI, 1.12–1.85) higher multivariate-adjusted risk of CVD mortality compared with those with normal triglycerides (<150β€…mg/dL). The findings remained significant when diabetes was defined by fasting glucose levels alone, or after further adjustment for the use of lipid-lowering medications, or after the exclusion of those who took lipid-lowering medications. Conclusion: This study demonstrates that fasting triglycerides of β‰₯200β€…mg/dL are associated with an increased risk of CVD mortality in patients with diabetes but not in those without diabetes. Future clinical trials of new treatments to lower triglycerides should focus on patients with diabetes

    Combining composition graded positive and negative electrodes for higher performance Li-ion batteries

    Get PDF
    Homogeneous electrode structures used in Li-ion batteries (LIB) lead to inhomogeneous active material utilization and gradients of overpotential and Li-ion concentration at the cell-scale, which are detrimental for both capacity retention at high charge-discharge rates and for battery life-time. To account for these gradients, we demonstrate that heterogenous electrode structures with engineered gradients in material distribution can improve LIB C-rate and long-term cycling performance when compared with conventional uniform electrodes in LiFePO4 || Li4Ti5O12 full-cell LIBs. An improvement in C-rate performance of > 120% and a capacity degradation rate reduced to <50% over uniform electrode cells was achieved at 1C, and graded cells showed a dramatically improved power-energy density balance. Graded electrodes had a relatively low cell polarization that became more marked as the C-rate increased. Cycled graded electrodes had reduced solid electrolyte interphase (SEI) formation when compared with uniform electrodes according to XPS surface analysis, which was consistent with their reduced charge transfer resistance measured by impedance spectroscopy. The origin of the improved performance arises from a more uniform overpotential distribution across the thickness of the graded hetero-electrodes

    Dietary fatty acids and mortality risk from heart disease in US adults: an analysis based on NHANES

    Get PDF
    We investigated the association of dietary intake of major types of fatty acids with heart disease mortality in a general adult cohort with or without a prior diagnosis of myocardial infarction (MI). This cohort study included US adults who attended the National Health and Nutrition Examination Surveys from 1988 to 2014. Heart disease mortality was ascertained by linkage to the National Death Index records through 31 December 2015. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of fatty acid intake for heart disease mortality. This cohort included 45,820 adults among which 1,541 had a prior diagnosis of MI. Participants were followed up for 532,722 person-years (mean follow-up, 11.6 years), with 2,313 deaths recorded from heart disease being recorded. Intake of saturated (SFAs) and monounsaturated fatty acids (MUFAs) was associated with heart disease mortality after adjustment for all the tested confounders. In contrast, a 5% higher calorie intake from polyunsaturated fatty acids (PUFAs) was associated with a 9% (HR, 0.91; 95% CI 0.83–1.00; P = 0.048) lower multivariate-adjusted risk of heart disease mortality. Sub-analyses showed that this inverse association was present in those without a prior diagnosis of MI (HR,0.89; 95% CI 0.80–0.99) but not in those with the condition (HR, 0.94; 95% CI 0.75–1.16). The lack of association in the MI group could be due to a small sample size or severity and procedural complications (e.g., stenting and medication adherence) of the disease. Higher PUFA intake was associated with a favourable lipid profile. However, further adjustment for plasma lipids did not materially change the inverse association between PUFAs and heart disease mortality. Higher intake of PUFAs, but not SFAs and MUFAs, was associated with a lower adjusted risk of heart disease mortality in a large population of US adults supporting the need to increase dietary PUFA intake in the general public

    Commentary on the article: β€œMaintenance of Wellness in Patients With Obsessive-Compulsive Disorder Who Discontinue Medication After Exposure/Response Prevention Augmentation A Randomized Clinical Trial”

    Get PDF
    Β© 2022 The Authors. Published by Elsevier Inc. This is an open access article distributed under the Creative Commons Non Commercial-No Derivatives Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by-nc-nd/4.0/Peer reviewe

    Depletion of follicular B cell-derived antibody secreting cells does not attenuate angiotensin II-induced hypertension or vascular compliance

    Get PDF
    IntroductionMarginal zone and follicular B cells are known to contribute to the development of angiotensin II-induced hypertension in mice, but the effector function(s) mediating this effect (e.g., antigen presentation, antibody secretion and/or cytokine production) are unknown. B cell differentiation into antibody secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether antibody secretion underlies the pro-hypertensive action of B cells.Methods10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-Blimp-1-KO) and floxed control mice were subcutaneously infused with angiotensin II (0.7β€…mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days. BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave velocity was measured by ultrasound. Aortic collagen was quantified by Masson's trichrome staining. Cell types and serum antibodies were quantified by flow cytometry and a bead-based multiplex assay, respectively.ResultsIn control mice, angiotensin II modestly increased serum IgG3 levels and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis. FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production despite having comparable numbers of B cells and ASCs to control mice. Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion.ConclusionsInhibition of follicular B cell differentiation into ASCs did not protect against angiotensin II-induced hypertension or vascular compliance. Follicular B cell functions independent of their differentiation into ASCs and ability to produce high-affinity antibodies, or other B cell subtypes, are likely to be involved in angiotensin II-induced hypertension

    Proteasome inhibition reduces plasma cell and antibody secretion, but not angiotensin II-induced hypertension

    Get PDF
    IntroductionDepletion of mature B cells affords protection against experimental hypertension. However, whether B cell-mediated hypertension is dependent on differentiation into antibody-secreting cells (ASCs) remains unclear. Using the proteasome inhibitor, bortezomib, the present study tested the effect of ASC reduction on angiotensin II-induced hypertension.MethodsMale C57BL6/J mice were infused with angiotensin II (0.7β€…mg/kg/day; s.c.) for 28 days via osmotic minipump to induce hypertension. Normotensive control mice received saline infusion. Bortezomib (750β€…ΞΌg/kg) or vehicle (0.1% DMSO) was administered (i.v.) 3 days prior to minipump implantation, and twice weekly thereafter. Systolic blood pressure was measured weekly using tail-cuff plethysmography. Spleen and bone marrow B1 (CD19+B220βˆ’), B2 (B220+CD19+) and ASCs (CD138hiSca-1+Blimp-1+) were enumerated by flow cytometry. Serum immunoglobulins were quantified using a bead-based immunoassay.ResultsBortezomib treatment reduced splenic ASCs by ∼68% and ∼64% compared to vehicle treatment in normotensive (2.00 ± 0.30 vs. 0.64 ± 0.15 × 105 cells; n = 10–11) and hypertensive mice (0.52 ± 0.11 vs. 0.14 ± 0.02 × 105 cells; n = 9–11), respectively. Bone marrow ASCs were also reduced by bortezomib in both normotensive (4.75 ± 1.53 vs. 1.71 ± 0.41 × 103 cells; n = 9–11) and hypertensive mice (4.12 ± 0.82 vs. 0.89 ± 0.18 × 103 cells; n = 9–11). Consistent with ASC reductions, bortezomib reduced serum IgM and IgG2a in all mice. Despite these reductions in ASCs and antibody levels, bortezomib did not affect angiotensin II-induced hypertension over 28 days (vehicle: 182 ± 4β€…mmHg vs. bortezomib: 177 ± 7β€…mmHg; n = 9–11).ConclusionReductions in ASCs and circulating IgG2a and IgM did not ameliorate experimental hypertension, suggesting other immunoglobulin isotypes or B cell effector functions may promote angiotensin II-induced hypertension
    • …
    corecore