746 research outputs found
Calculation of Effective Coulomb Interaction for , , and
In this paper, the Slater integrals for a screened Coulomb interaction of the
the Yukawa form are calculated and by fitting the Thomas-Fermi wavevector, good
agreement is obtained with experiment for the multiplet spectra of
and ions. Moreover, a predicted multiplet spectrum for the heavy
fermion superconductor is shown with a calculated Coulomb U of 1.6 eV.
These effective Coulomb interactions, which are quite simple to calculate,
should be useful inputs to further many-body calculations in correlated
electron metals.Comment: 8 pages, revtex, 3 uuencoded postscript figure
Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question
Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30-60 degree hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators
Wide-angle electron beams from laser-wakefield accelerators
Advances in laser technology have driven the development of laser-wakefield accelerators, compact devices that are capable of accelerating electrons to GeV energies over centimetre distances by exploiting the strong electric field gradients arising from the interaction of intense laser pulses with an underdense plasma. A side-effect of this acceleration mechanism is the production of high-charge, low-energy electron beams at wide angles. Here we present an experimental and numerical study of the properties of these wide-angle electron beams, and show that they carry off a significant fraction of the energy transferred from the laser to the plasma. These high-charge, wide-angle beams can also cause damage to laser-wakefield accelerators based on capillaries, as well as become source of unwanted bremsstrahlung radiation
Free Fermions and Thermal AdS/CFT
The dynamics of finite temperature U(N) gauge theories on can be
described, at weak coupling, by an effective unitary matrix model. Here we
present an exact solution to these models, for any value of , in terms of a
sum over representations. Taking the large limit of this solution provides
a new perspective on the deconfinement transition which is supposed to be dual
to the Hawking-Page transition. The large phase transition manifests itself
here in a manner similar to the Douglas-Kazakov phase transition in 2d
Yang-Mills theory. We carry out a complete analysis of the saddle
representation in the simplest case involving only the order parameter . We find that the saddle points corresponding to thermal , the small
black hole and the large black hole can all be described in terms of free
fermions. They all admit a simple phase space description {\it a la} the BPS
geometries of Lin, Lunin and Maldacena.Comment: (0+34) pages and 9 figures, v2 references adde
Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids
We use a modified Shan-Chen, noiseless lattice-BGK model for binary
immiscible, incompressible, athermal fluids in three dimensions to simulate the
coarsening of domains following a deep quench below the spinodal point from a
symmetric and homogeneous mixture into a two-phase configuration. We find the
average domain size growing with time as , where increases
in the range , consistent with a crossover between
diffusive and hydrodynamic viscous, , behaviour. We find
good collapse onto a single scaling function, yet the domain growth exponents
differ from others' works' for similar values of the unique characteristic
length and time that can be constructed out of the fluid's parameters. This
rebuts claims of universality for the dynamical scaling hypothesis. At early
times, we also find a crossover from to in the scaled structure
function, which disappears when the dynamical scaling reasonably improves at
later times. This excludes noise as the cause for a behaviour, as
proposed by others. We also observe exponential temporal growth of the
structure function during the initial stages of the dynamics and for
wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review
Bosonization of non-relativstic fermions in 2-dimensions and collective field theory
We revisit bosonization of non-relativistic fermions in one space dimension.
Our motivation is the recent work on bubbling half-BPS geometries by Lin, Lunin
and Maldacena (hep-th/0409174). After reviewing earlier work on exact
bosonization in terms of a noncommutative theory, we derive an action for the
collective field which lives on the droplet boundaries in the classical limit.
Our action is manifestly invariant under time-dependent reparametrizations of
the boundary. We show that, in an appropriate gauge, the classical collective
field equations imply that each point on the boundary satisfies Hamilton's
equations for a classical particle in the appropriate potential. For the
harmonic oscillator potential, a straightforward quantization of this action
can be carried out exactly for any boundary profile. For a finite number of
fermions, the quantum collective field theory does not reproduce the results of
the exact noncommutative bosonization, while the latter are in complete
agreement with the results computed directly in the fermi theory.Comment: references added and typos corrected; 21 pages, 3 figures, eps
Relativistic transition wavelenghts and probabilities for spectral lines of Ne II
Transition wavelengths and probabilities for several 2p4 3p - 2p4 3s and 2p4
3d - 2p4 3p lines in fuorine-like neon ion (NeII) have been calculated within
the multiconfiguration Dirac-Fock (MCDF) method with quantum electrodynamics
(QED) corrections. The results are compared with all existing experimental and
theoretical data
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Approximate k-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry
Using an approximation scheme to deal with the centrifugal
(pseudo-centrifugal) term, we solve the Dirac equation with the screened
Coulomb (Yukawa) potential for any arbitrary spin-orbit quantum number
{\kappa}. Based on the spin and pseudospin symmetry, analytic bound state
energy spectrum formulas and their corresponding upper- and lower-spinor
components of two Dirac particles are obtained using a shortcut of the
Nikiforov-Uvarov method. We find a wide range of permissible values for the
spin symmetry constant C_{s} from the valence energy spectrum of particle and
also for pseudospin symmetry constant C_{ps} from the hole energy spectrum of
antiparticle. Further, we show that the present potential interaction becomes
less (more) attractive for a long (short) range screening parameter {\alpha}.
To remove the degeneracies in energy levels we consider the spin and pseudospin
solution of Dirac equation for Yukawa potential plus a centrifugal-like term. A
few special cases such as the exact spin (pseudospin) symmetry Dirac-Yukawa,
the Yukawa plus centrifugal-like potentials, the limit when {\alpha} becomes
zero (Coulomb potential field) and the non-relativistic limit of our solution
are studied. The nonrelativistic solutions are compared with those obtained by
other methods.Comment: 21 pages, 6 figure
Counting Chiral Operators in Quiver Gauge Theories
We discuss in detail the problem of counting BPS gauge invariant operators in
the chiral ring of quiver gauge theories living on D-branes probing generic
toric CY singularities. The computation of generating functions that include
counting of baryonic operators is based on a relation between the baryonic
charges in field theory and the Kaehler moduli of the CY singularities. A study
of the interplay between gauge theory and geometry shows that given geometrical
sectors appear more than once in the field theory, leading to a notion of
"multiplicities". We explain in detail how to decompose the generating function
for one D-brane into different sectors and how to compute their relevant
multiplicities by introducing geometric and anomalous baryonic charges. The
Plethystic Exponential remains a major tool for passing from one D-brane to
arbitrary number of D-branes. Explicit formulae are given for few examples,
including C^3/Z_3, F_0, and dP_1.Comment: 75 pages, 22 figure
- …
