49 research outputs found

    Clonal hematopoiesis: Mechanisms driving dominance of stem cell clones

    Get PDF
    The discovery of clonal hematopoiesis (CH) in older individuals has changed the way hematologists and stem cell biologists view aging. Somatic mutations accumulate in stem cells over time. While most mutations have no impact, some result in subtle functional differences that ultimately manifest in distinct stem cell behaviors. With a large pool of stem cells and many decades to compete, some of these differences confer advantages under specific contexts. Approximately 20 genes are recurrently found as mutated in CH, indicating they confer some advantage. The impact of these mutations has begun to be analyzed at a molecular level by modeling in cell lines and in mice. Mutations in epigenetic regulators such as DNMT3A and TET2 confer an advantage by enhancing self-renewal of stem and progenitor cells and inhibiting their differentiation. Mutations in other genes involved in the DNA damage response may simply enhance cell survival. Here, we review proposed mechanisms that lead to CH, specifically in the context of stem cell biology, based on our current understanding of the function of some of the CH-associated genes

    Promiscuous Expression of H2B-GFP Transgene in Hematopoietic Stem Cells

    Get PDF
    The study of adult stem cells relies on the ability to isolate them using complex combinations of markers for flow cytometry. A recent study has used a tetracycline-regulatable H2B-GFP transgenic mouse model analogous to BrdU pulse-chase methods to fluorescently label quiescent skin stem cells in vivo. In this study, we sought to use these mice to fluorescently label hematopoietic stem cells to study niche interactions.We crossed the H2B-GFP mice to mice carrying a tetracycline-regulated transactivator protein. When these mice were administered doxycycline, we observed a gradual decrease in total bone marrow GFP(+) cells over 12 weeks but the hematopoietic stem cell population remained largely GFP(+) (>85%). In histological bone sections, the long-term GFP label-retaining cells tended to concentrate at the endosteal surface and competitive transplantation assays showed that the majority of hematopoietic stem cell activity was contained in the GFP(+) cell fraction. However, in response to stimulation with 5-fluorouracil, the hematopoietic stem cells of the crossed mice still retained a high level of GFP expression when it was anticipated the label should be lost when the cells divide. Upon further review, it was determined that the founder H2B-GFP mice showed spurious expression of the transgene at high levels in the hematopoietic stem cell population, thus the observed response of hematopoietic stem cells in the double transgenic mice to doxycycline was due to aberrant expression of the transgene and not the correct tetracycline-regulatable system.We observed promiscuous expression of the H2B-GFP transgene in the hematopoietic stem cell compartment of the bone marrow. This leaky expression prohibits the use of this model to study hematopoietic stem cells in vivo and careful characterization for each organ must be done if this transgenic system is to be used to isolate other prospective tissue stem cells

    Droplet digital PCR for oncogenic KMT2A fusion detection

    Get PDF
    Acute myeloid leukemia (AML) is an aggressive blood cancer diagnosed in approximately 120,000 individuals worldwide each year. During treatment for AML, detecting residual disease is essential for prognostication and treatment decision-making. Currently, methods for detecting residual AML are limited to identifying approximately 1:100 to 1:1000 leukemic cells (morphology and DNA sequencing) or are difficult to implement (flow cytometry). AML arising after chemotherapy or radiation exposure is termed therapy-related AML (t-AML) and is exceptionally aggressive and treatment resistant. t-AML is often driven by oncogenic fusions that result from prior treatments that introduce double-strand DNA breaks. The most common t-AML-associated translocations affect KMT2A. There are at least 80 known KMT2A fusion partners, but approximately 80% of fusions involve only five partners-AF9, AF6, AF4, ELL, and ENL. We present a novel droplet digital PCR assay targeting the most common KMT2A-rearrangements to enable detection of rare AML cells harboring these fusions. This assay was benchmarked in cell lines and patient samples harboring oncogenic KMT2A fusions and demonstrated a limit of detection of approximately 1:1,000,000 cells. Future application of this assay could improve disease detection and treatment decision-making for patients with t-AML with KMT2A fusions and premalignant oncogenic fusion detection in at-risk individuals after chemotherapy exposure

    TGFβR-SMAD3 signaling induces resistance to PARP inhibitors in the bone marrow microenvironment

    Get PDF
    Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFβR) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-β1). Genetic and/or pharmacological targeting of the TGF-β1-TGFβR kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFβR inhibitor in patients receiving PARPis

    Divergent effects of DNMT3A and TET2 mutations on hematopoietic progenitor cell fitness

    Get PDF
    The DNA methylation regulators DNMT3A and TET2 are recurrently mutated in hematological disorders. Despite possessing antagonistic biochemical activities, loss-of-function murine models show overlapping phenotypes in terms of increased hematopoietic stem cell (HSC) fitness. Here, we directly compared the effects of these mutations on hematopoietic progenitor function and disease initiation. In contrast to Dnmt3a-null HSCs, which possess limitless self-renewal in vivo, Tet2-null HSCs unexpectedly exhaust at the same rate as control HSCs in serial transplantation assays despite an initial increase in self-renewal. Moreover, loss of Tet2 more acutely sensitizes hematopoietic cells to the addition of a common co-operating mutation (Flt

    Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation

    Get PDF
    Advances in sequencing technology allow researchers to map genome-wide changes in DNA methylation in development and disease. However, there is a lack of experimental tools to site-specifically manipulate DNA methylation to discern the functional consequences. We developed a CRISPR/Cas9 DNA methyltransferase 3A (DNMT3A) fusion to induce DNA methylation at specific loci in the genome. We induced DNA methylation at up to 50% of alleles for targeted CpG dinucleotides. DNA methylation levels peaked within 50 bp of the short guide RNA (sgRNA) binding site and between pairs of sgRNAs. We used our approach to target methylation across the entire CpG island at the CDKN2A promoter, three CpG dinucleotides at the ARF promoter, and the CpG island within the Cdkn1a promoter to decrease expression of the target gene. These tools permit mechanistic studies of DNA methylation and its role in guiding molecular processes that determine cellular fate

    Radiation induces iatrogenic immunosuppression by indirectly affecting hematopoiesis in bone marrow

    Get PDF
    The immune system plays a vital role in cancer therapy, especially with the advent of immunotherapy. Radiation therapy induces iatrogenic immunosuppression referred to as radiation-induced lymphopenia (RIL). RIL correlates with significant decreases in the overall survival of cancer patients. Although the etiology and severity of lymphopenia are known, the mechanism(s) of RIL are largely unknown. We found that irradiation not only had direct effects on circulating lymphocytes but also had indirect effects on the spleen, thymus, and bone marrow. We found that irradiated cells traffic to the bone marrow and bring about the reduction of hematopoietic stem cells (HSC) and progenitor cells. Using mass cytometry analysis (CyTOF) of the bone marrow, we found reduced expression of CD11a, which is required for T cell proliferation and maturation. RNA Sequencing and gene set enrichment analysis of the bone marrow cells following irradiation showed down-regulation of genes involved in hematopoiesis. Identification of CD11a and hematopoietic genes involved in iatrogenic immune suppression can help identify mechanisms of RIL

    Distinct tumor necrosis factor alpha receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis

    Get PDF
    UNLABELLED: Clonal hematopoiesis resulting from the enhanced fitness of mutant hematopoietic stem cells (HSC) associates with both favorable and unfavorable health outcomes related to the types of mature mutant blood cells produced, but how this lineage output is regulated is unclear. Using a mouse model of a clonal hematopoiesis-associated mutation, DNMT3AR882/+ (Dnmt3aR878H/+), we found that aging-induced TNFα signaling promoted the selective advantage of mutant HSCs and stimulated the production of mutant B lymphoid cells. The genetic loss of the TNFα receptor TNFR1 ablated the selective advantage of mutant HSCs without altering their lineage output, whereas the loss of TNFR2 resulted in the overproduction of mutant myeloid cells without altering HSC fitness. These results nominate TNFR1 as a target to reduce clonal hematopoiesis and the risk of associated diseases and support a model in which clone size and mature blood lineage production can be independently controlled to modulate favorable and unfavorable clonal hematopoiesis outcomes. SIGNIFICANCE: Through the identification and dissection of TNFα signaling as a key driver of murine Dnmt3a-mutant hematopoiesis, we report the discovery that clone size and production of specific mature blood cell types can be independently regulated. See related commentary by Niño and Pietras, p. 2724. This article is highlighted in the In This Issue feature, p. 2711

    Spatial mapping of hematopoietic clones in human bone marrow

    Get PDF
    UNLABELLED: Clonal hematopoiesis (CH) is the expansion of somatically mutated cells in the hematopoietic compartment of individuals without hematopoietic dysfunction. Large CH clones (i.e., \u3e2% variant allele fraction) predispose to hematologic malignancy, but CH is detected at lower levels in nearly all middle-aged individuals. Prior work has extensively characterized CH in peripheral blood, but the spatial distribution of hematopoietic clones in human bone marrow is largely undescribed. To understand CH at this level, we developed a method for spatially aware somatic mutation profiling and characterized the bone marrow of a patient with polycythemia vera. We identified the complex clonal distribution of somatic mutations in the hematopoietic compartment, the restriction of somatic mutations to specific subpopulations of hematopoietic cells, and spatial constraints of these clones in the bone marrow. This proof of principle paves the way to answering fundamental questions regarding CH spatial organization and factors driving CH expansion and malignant transformation in the bone marrow. SIGNIFICANCE: CH occurs commonly in humans and can predispose to hematologic malignancy. Although well characterized in blood, it is poorly understood how clones are spatially distributed in the bone marrow. To answer this, we developed methods for spatially aware somatic mutation profiling to describe clonal heterogeneity in human bone marrow. See related commentary by Austin and Aifantis, p. 139
    corecore