2,878 research outputs found
Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure
Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted
Immunodeficiency in Pancreatic Adenocarcinoma with Diabetes Revealed by Comparative Genomics
Purpose: Pancreatic adenocarcinomas (PAAD) often are not diagnosed until their late stages, leaving no effective treatments. Currently, immunotherapy provides a promising treatment option against this malignancy. However, a set of immunotherapy agents benefit patients with many types of cancer, but not PAAD. Sharing the origin in the same organ, diabetes and PAAD tend to occur concurrently. We aimed to identify the impact of diabetes on immunotherapy of PAAD by conducting a comparative genomics analysis.Experimental Design: We analyzed level 3 PAAD genomics data (RNAseq, miRNAseq, DNA methylation, somatic copy number, and somatic mutation) from The Cancer Genome Atlas (TCGA) and Firehose. The differential molecular profiles in PAAD with/out diabetes were performed by the differential gene expression, pathway analysis, epigenetic regulation, somatic copy-number alteration, and somatic gene mutation.Results: Differential gene expression analysis revealed a strong enrichment of immunogenic signature genes in diabetic individuals, including PD-1 and CTLA4, that were currently targetable for immunotherapy. Pathway analysis further implied that diabetic individuals were defective in immune modulation genes. Somatic copy-number aberration (SCNA) analysis showed a higher frequency of amplification and deletion occurred in the cohort without diabetes. Integrative analysis revealed strong association between differential gene expression, and epigenetic regulations, however, seemed not affected by SCNAs. Importantly, our somatic mutation analysis showed that the occurrence of diabetes in PAAD was associated with a large set of gene mutations encoding genes participating in immune modulation.Conclusions: Our analysis reveals the impact of diabetes on immunodeficiency in PAAD patients and provides novel insights into new therapeutic opportunities
Switch from canonical to noncanonical Wnt signaling mediates high glucose-induced adipogenesis
Human bone marrow mesenchymal progenitor cells (MPCs) are multipotent cells that play an essential role in endogenous repair and the maintenance of the stem cell niche. We have recently shown that high levels of glucose, conditions mimicking diabetes, cause impairment of MPCs, resulting in enhanced adipogenesis and suppression of osteogenesis. This implies that diabetes may lead to reduced endogenous repair mechanisms through altering the differentiation potential of MPCs and, consequently, disrupting the stem cell niche. Phenotypic alterations in the bone marrow of long-term diabetic patients closely resemble this observation. Here, we show that high levels of glucose selectively enhance autogenous Wnt11 expression in MPCs to stimulate adipogenesis through the Wnt/protein kinase C noncanonical pathway. This novel mechanism may account for increased bone marrow adipogenesis, severe bone loss, and reduced vascular stem cells leading to chronic secondary complications of diabetes. Stem Cells 2014;32:1649-1660 © 2014 AlphaMed Press
Ataxia Telangiectasia Mutated Dysregulation Results in Diabetic Retinopathy
Ataxia telangiectasia mutated (ATM) acts as a defense against a variety of bone marrow (BM) stressors. We hypothesized that ATM loss in BM-hematopoietic stem cells (HSCs) would be detrimental to both HSC function and microvascular repair while sustained ATM would be beneficial in disease models of diabetes. Chronic diabetes represents a condition associated with HSC depletion and inadequate vascular repair. Gender mismatched chimeras of ATM(-/-) on wild type background were generated and a cohort were made diabetic using streptozotocin (STZ). HSCs from the STZ-ATM(-/-) chimeras showed (a) reduced self-renewal; (b) decreased long-term repopulation; (c) depletion from the primitive endosteal niche; (d) myeloid bias; and (e) accelerated diabetic retinopathy (DR). To further test the significance of ATM in hematopoiesis and diabetes, we performed microarrays on circulating angiogenic cells, CD34(+) cells, obtained from a unique cohort of human subjects with long-standing (>40 years duration) poorly controlled diabetes that were free of DR. Pathway analysis of microarrays in these individuals revealed DNA repair and cell-cycle regulation as the top networks with marked upregulation of ATM mRNA compared with CD34(+) cells from diabetics with DR. In conclusion, our study highlights using rodent models and human subjects, the critical role of ATM in microvascular repair in DR
Antiarrhythmic and proarrhythmic effects of subcutaneous nerve stimulation in ambulatory dogs
Background
High output subcutaneous nerve stimulation (ScNS) remodels the stellate ganglia and suppresses cardiac arrhythmia.
Objective
To test the hypothesis that long duration low output ScNS causes cardiac nerve sprouting, increases plasma norepinephrine concentration and the durations of paroxysmal atrial tachycardia (PAT) in ambulatory dogs.
Methods
We prospectively randomized 22 dogs (11 males and 11 females) into 5 different output groups for 2 months of ScNS: 0 mA (sham) (N=6), 0.25 mA (N=4), 1.5 mA (N=4), 2.5 mA (N=4) and 3.5 mA (N=4).
Results
As compared with baseline, the changes of the durations of PAT episodes per 48 hours were significantly different among different groups (sham, -5.0±9.5 s; 0.25 mA 95.5±71.0 s; 1.5 mA, -99.3±39.6 s; 2.5 mA, -155.3±87.8 s and 3.5 mA, -76.3±44.8 s, p<0.001). The 3.5 mA group had greater reduction of sinus heart rate than the sham group (-29.8±15.0 bpm vs -14.5±3.0 bpm, p=0.038). Immunohistochemical studies showed that the 0.25 mA group had a significantly increased while 2.5 mA and 3.5 mA stimulation had a significantly reduced growth-associated protein 43 nerve densities in both atria and ventricles. The plasma Norepinephrine concentrations in 0.25 mA group was 5063.0±4366.0 pg/ml, which was significantly higher than other groups of dogs (739.3±946.3, p=0.009). There were no significant differences in the effects of simulation between males and females.
Conclusions
In ambulatory dogs, low output ScNS causes cardiac nerve sprouting, increases plasma norepinephrine concentration and the duration of PAT episodes while high output ScNS is antiarrhythmic
Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy
CYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis
Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair
Recommended from our members
The Role of ACAID and CD4+CD25+FOXP3+ Regulatory T Cells on CTL Function Against MHC Alloantigens
Purpose: Anterior chamber associated immune deviation (ACAID) is an antigen-specific form of peripheral immune tolerance that is induced to exogenous antigens placed in the ocular anterior chamber, which leads to a suppression in delayed-type hypersensitivity (DTH). Considerable work has been done on ACAID induction to major histocompatibility (MHC) alloantigens. However, its role on cytotoxic T lymphocyte (CTL) activity is currently unknown. Methods: C57BL/6 (H-2b) mice received an intracameral (IC) inoculation with BALB/c (H-2d) splenocytes. Splenic CD4+ and CD8+ T cell populations were characterized by flow cytometry and proliferation assays during induction and expression phases of ACAID. Percentages of CD4+CD25+FoxP3+ T regulatory cells (Treg) were also followed. Lastly, CTL function was measured at various time points during ACAID expression, and Treg were added to identify potential alterations in CTL function. Results: CD4+ and CD8+ T cell percentages and proliferation increased in the spleen during ACAID induction but then sharply decreased in response to an allospecific immunization. Expression of ACAID also exhibited a significant drop in CTL function. However, while Treg expansion was observed, these cells did not directly mediate the CTL inhibition. Conclusions: ACAID mediates an inhibition of CTL function against MHC alloantigens. Furthermore, we found that ACAID induction leads to the expansion and proliferation of CD4+ and CD8+ T cells while ACAID expression is associated with a diminishment in T cell percentages due to proliferation impairment. Lastly, Treg also expand during ACAID induction. However, our data suggest that Treg do not directly inhibit CTL activity
Rap1B promotes VEGF-induced endothelial permeability and is required for dynamic regulation of the endothelial barrier
Vascular endothelial growth factor (VEGF), a key angiogenic and permeability factor, plays an important role in new blood vessel formation. However, abnormal VEGF-induced VEGFR2 signaling leads to hyperpermeability. We have shown previously that Rap1, best known for promoting cell adhesion and vessel stability, is a critical regulator of VEGFR2-mediated angiogenic and shear-stress EC responses. To determine the role of Rap1 role in endothelial barrier dynamics, we examined vascular permeability in EC-specific Rap1A- and Rap1B-knockout mice, cell-cell junction remodeling and EC monolayer resistivity in Rap1-deficient ECs under basal, inflammatory or elevated VEGF conditions. Deletion of either Rap1 isoform impaired de novo adherens junction (AJ) formation and recovery from LPS-induced barrier disruption in vivo However, only Rap1A deficiency increased permeability in ECs and lung vessels. Interestingly, Rap1B deficiency attenuated VEGF-induced permeability in vivo and AJ remodeling in vitro Therefore, only Rap1A is required for the maintenance of normal vascular integrity. Importantly, Rap1B is the primary isoform essential for normal VEGF-induced EC barrier dissolution. Deletion of either Rap1 isoform protected against hyper permeability in the STZ-induced diabetes model, suggesting clinical implications for targeting Rap1 in pathologies with VEGF-induced hyperpermeability
- …