3 research outputs found

    Towards an adaptive management approach for the conservation of rare antelope in the Kruger National Park - outcome of a workshop held in May 2000

    No full text
    A precipitous drop in rare antelope numbers specifically roan (Hippotragus equinis) sable (Hippotragus niger) and tsessebe (Damaliscus lunatus) since 1986 has become one of the main concerns of management. The zebra (Equus burchelli) population in the preferred habitats of these species had increased with the development of artificial waterpoints especially in the areas occupied by roan and tsessebe, and these events are hypothesised to be the main cause of the decline. Closure of artificial waterpoints resulted in moving the high-density, water-dependent zebra from the northern basalt plains, the preferred roan habitat. However, the expected responding increase in the rare antelope populations did not materialise. This lack of response over six years necessitated a critical re-evaluation of the management of rare antelope in the Kruger National Park. Subsequently, a workshop was held at Skukuza during May 2000. The options for adaptive management of the declining rare antelope populations, which was discussed at the workshop, is the subject of this manuscript. The participants felt that the removal/closure of artificial waterpoints was the most unintrusive management tool available to move high density grazers from the habitats preferred by rare antelope. Waterpoints to be closed should be carefully evaluated, and time allowed for rare antelope to respond to habitat changes. Boosting populations of roan and tsessebe by supplementing animals was seriously considered, with the proviso that it should be done under favourable circumstances. Small patch fires that could provide green grazing over extended periods were recommended. Predator control was discussed but could not obtain general support as a viable option in the Kruger National Park

    Evaluating herbivore management outcomes and associated vegetation impacts

    No full text
    African savannas are characterised by temporal and spatial fluxes that are linked to fluxes in herbivore populations and vegetation structure and composition. We need to be concerned about these fluxes only when management actions cause the system to shift towards a less desired state. Large herbivores are a key attribute of African savannas and are important for tourism and biodiversity. Large protected areas such as the Kruger National Park (KNP) manage for high biodiversity as the desired state, whilst private protected areas, such as those adjacent to the KNP, generally manage for high income. Biodiversity, sustainability and economic indicators are thus required to flag thresholds of potential concern (TPCs) that may result in a particular set of objectives not being achieved. In large conservation areas such as the KNP, vegetation changes that result from herbivore impact, or lack thereof, affect biodiversity and TPCs are used to indicate unacceptable change leading to a possible loss of biodiversity; in private protected areas the loss of large herbivores is seen as an important indicator of economic loss. Therefore, the first-level indicators aim to evaluate the forage available to sustain grazers without deleteriously affecting the vegetation composition, structure and basal cover. Various approaches to monitoring for these indicators were considered and the importance of the selection of sites that are representative of the intensity of herbivore use is emphasised. The most crucial step in the adaptive management process is the feedback of information to inform management decisions and enable learning. Feedback loops tend to be more efficient where the organisation’s vision is focused on, for example, economic gain, than in larger protected areas, such as the KNP, where the vision to conserve biodiversity is broader and more complex. Conservation implications: In rangeland, optimising herbivore numbers to achieve the management objectives without causing unacceptable or irreversible change in the vegetation is challenging. This manuscript explores different avenues to evaluate herbivore impact and the outcomes of management approaches that may affect vegetation

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore