5 research outputs found
Immunogenicity of a Third Scheduled Dose of Rotarix in Australian Indigenous Infants: A Phase IV, Double-blind, Randomized, Placebo-Controlled Clinical Trial
BackgroundRotarix (GlaxoSmithKline) oral rotavirus vaccine is licensed as 2 doses in the first 6 months of life. In settings with high child mortality rates, clinical protection conferred by 2 doses of Rotarix is reduced. We assessed vaccine immune response when an additional dose of Rotarix was given to Australian Aboriginal children 6 to MethodsORVAC is a 2-stage, double-blind, randomized, placebo-controlled trial. Australian Aboriginal children 6 to ResultsBetween March 2018 and August 2020, a total of 253 infants were enrolled. Of these, 178 infants (70%) had analyzable serological results after follow-up; 89 were randomized to receive Rotarix, and 89 to receive placebo. The proportion with seroresponse was 85% after Rotarix compared with 72% after placebo. There were no occurrences of intussusception or any serious adverse events.ConclusionsAn additional dose of Rotarix administered to Australian Aboriginal infants 6 to Clinical trials registrationNCT02941107
PCV7- and PCV10-Vaccinated Otitis-Prone Children in New Zealand Have Similar Pneumococcal and <i>Haemophilus influenzae</i> Densities in Their Nasopharynx and Middle Ear
Otitis media (OM) is a major reason for antibiotic consumption and surgery in children. Nasopharyngeal carriage of otopathogens, Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi), is a prerequisite for development of OM, and increased nasopharyngeal otopathogen density correlates with disease onset. Vaccines can reduce or eliminate otopathogen carriage, as demonstrated for pneumococcal serotypes included in pneumococcal conjugate vaccines (PCV). The 10-valent PCV (PCV10) includes an NTHi carrier protein, and in 2011 superseded 7-valent PCV on the New Zealand Immunisation Program. Data are conflicting on whether PCV10 provides protection against NTHi carriage or disease. Assessing this in otitis-prone cohorts is important for OM prevention. We compared otopathogen density in the nasopharynx and middle ear of New Zealand PCV7-vaccinated and PCV10-vaccinated otitis-prone and non-otitis-prone children to determine PCV10 impact on NTHi and S. pneumoniae carriage. We applied qPCR to specimens collected from 217 PCV7-vaccinated children (147 otitis-prone and 70 non-otitis-prone) and 240 PCV10-vaccinated children (178 otitis-prone and 62 non-otitis-prone). After correcting for age and day-care attendance, no difference was observed between NTHi density in the nasopharynx of PCV7-vaccinated versus PCV10-vaccinated otitis-prone (p = 0.563) or non-otitis-prone (p = 0.513) children. In contrast, pneumococcal nasopharyngeal density was higher in PCV10-vaccinated otitis-prone children than PCV7-vaccinated otitis-prone children (p = 0.003). There was no difference in otopathogen density in middle ear effusion from PCV7-vaccinated versus PCV10-vaccinated otitis-prone children (NTHi p = 0.918; S. pneumoniae p = 0.415). When pneumococcal carriage was assessed by vaccine serotypes (VT) and non-vaccine serotypes (NVT), there was no difference in VT density (p = 0.546) or NVT density (p = 0.315) between all PCV7-vaccinated versus all PCV10-vaccinated children. In summary, PCV10 did not reduce NTHi density in the nasopharynx or middle ear, and was associated with increased pneumococcal nasopharyngeal density in otitis-prone children in New Zealand. Development of therapies that prevent or reduce otopathogen colonisation density in the nasopharynx are warranted to reduce the burden of OM
High concentrations of middle ear antimicrobial peptides and proteins and proinflammatory cytokines are associated with detection of middle ear pathogens in children with recurrent acute otitis media.
Recurrent and chronic otitis media (OM) are often refractory to antibiotics due to bacterial persistence in biofilm within the middle ear. In vitro and in vivo studies have demonstrated that antimicrobial proteins and peptides (AMPs) are bactericidal against otopathogens, indicating potential therapeutic value for recalcitrant OM. We measured concentrations of 6 AMPs and 14 cytokines in middle ear effusion (MEE) from 67 children undergoing ventilation tube insertion for recurrent acute OM. Sixty one percent of children had bacterial otopathogens detected in their MEE, 39% by PCR and 22% by PCR and culture. Groups were defined as: PCR-negative/culture-negative (absence of bacterial otopathogen), n = 26; PCR-positive/culture-negative (presence of nonculturable bacterial otopathogen), n = 26; PCR-positive/culture-positive (presence of culturable bacterial otopathogen), n = 15. Age, antibiotic usage, day-care attendance, presence of respiratory viruses in MEE and number of AOM episodes were similar between groups. AMP and cytokine concentrations were higher in children with bacterial otopathogens in their MEE compared to those with no bacterial otopathogens. Median concentrations of AMPs (except HBD2) were 3 to 56-fold higher in MEE from children with bacterial otopathogens detected in their MEE (P ≤ 0.01). Similarly, median cytokine concentrations (except TGFβ) were >16-fold higher in MEE with bacterial otopathogens detected (P ≤ 0.001). This is the first study to measure AMPs in MEE and together with the cytokine data, results suggest that elevated AMPs and cytokines in MEE are a marker of inflammation and bacterial persistence. AMPs may play an important role in OM pathogenesis
Histo-blood group antigen profile of Australian Aboriginal children and seropositivity following oral rotavirus vaccination.
BackgroundHisto-blood group antigens (HBGAs) may influence immune responses to rotavirus vaccination.MethodsHBGA phenotyping was determined by detection of antigens A, B, H and Lewis a and b in saliva using enzyme-linked immunosorbent assay. Secretor status was confirmed by lectin antigen assay if A, B and H antigens were negative or borderline (OD ± 0.1 of threshold of detection). PCR-RFLP analysis was used to identify the FUT2 'G428A' mutation in a subset. Rotavirus seropositivity was defined as serum anti-rotavirus IgA ≥ 20 AU/mL.ResultsOf 156 children, 119 (76 %) were secretors, 129 (83 %) were Lewis antigen positive, and 105 (67 %) were rotavirus IgA seropositive. Eighty-seven of 119 (73 %) secretors were rotavirus seropositive, versus 4/9 (44 %) weak secretors and 13/27 (48 %) non-secretors.ConclusionsMost Australian Aboriginal children were secretor and Lewis antigen positive. Non-secretor children were less likely to be seropositive to rotavirus antibodies following vaccination, but this phenotype was less common. HBGA status is unlikely to fully explain underperformance of rotavirus vaccines among Australian Aboriginal children
Combination of clinical symptoms and blood biomarkers can improve discrimination between bacterial or viral community-acquired pneumonia in children
Abstract Background Differentiating bacterial from viral pneumonia is important for guiding targeted management and judicious use of antibiotics. We assessed if clinical characteristics and blood inflammatory biomarkers could be used to distinguish bacterial from viral pneumonia. Methods Western Australian children (≤17 years) hospitalized with radiologically-confirmed community-acquired pneumonia were recruited and clinical symptoms and management data were collected. C-reactive protein (CRP), white cell counts (WCC) and absolute neutrophil counts (ANC) were measured as part of routine care. Clinical characteristics and biomarker levels were compared between cases with definite bacterial pneumonia (clinical empyema and/or bacteria detected in blood or pleural fluid), presumed viral pneumonia (presence of ≥1 virus in nasopharyngeal swab without criteria for definite bacterial pneumonia), and other pneumonia cases (pneumonia in the absence of criteria for either definite bacterial or presumed viral pneumonia). The area-under-curve (AUC) of the receiver operating characteristic (ROC) curve for varying biomarker levels were used to characterise their utility for discriminating definite bacterial from presumed viral pneumonia. For biomarkers with AUC > 0.8 (fair discriminator), Youden index was measured to determine the optimal cut-off threshold, and sensitivity, specificity, predictive values (positive and negative) were calculated. We investigated whether better discrimination could be achieved by combining biomarker values with the presence/absence of symptoms. Results From May 2015 to October 2017, 230 pneumonia cases were enrolled: 30 with definite bacterial pneumonia, 118 with presumed viral pneumonia and 82 other pneumonia cases. Differences in clinical signs and symptoms across the groups were noted; more definite bacterial pneumonia cases required intravenous fluid and oxygen supplementation than presumed viral or other pneumonia cases. CRP, WCC and ANC were substantially higher in definite bacterial cases. For a CRP threshold of 72 mg/L, the AUC of ROC was 0.82 for discriminating definite bacterial pneumonia from presumed viral pneumonia. Combining the CRP with either the presence of fever (≥38οC) or the absence of rhinorrhea improved the discrimination. Conclusions Combining elevated CRP with the presence or absence of clinical signs/ symptoms differentiates definite bacterial from presumed viral pneumonia better than CRP alone. Further studies are required to explore combination of biomarkers and symptoms for use as definitive diagnostic tool