652 research outputs found

    Cochlear Implant Outcomes and Genetic Mutations in Children with Ear and Brain Anomalies

    Get PDF
    Background. Specific clinical conditions could compromise cochlear implantation outcomes and drastically reduce the chance of an acceptable development of perceptual and linguistic capabilities. These conditions should certainly include the presence of inner ear malformations or brain abnormalities. The aims of this work were to study the diagnostic value of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in children with sensorineural hearing loss who were candidates for cochlear implants and to analyse the anatomic abnormalities of the ear and brain in patients who underwent cochlear implantation. We also analysed the effects of ear malformations and brain anomalies on the CI outcomes, speculating on their potential role in the management of language developmental disorders. Methods. The present study is a retrospective observational review of cochlear implant outcomes among hearing-impaired children who presented ear and/or brain anomalies at neuroimaging investigations with MRI and HRCT. Furthermore, genetic results from molecular genetic investigations (GJB2/GJB6 and, additionally, in selected cases, SLC26A4 or mitochondrial-DNA mutations) on this study group were herein described. Longitudinal and cross-sectional analysis was conducted using statistical tests. Results. Between January 1, 1996 and April 1, 2012, at the ENT-Audiology Department of the University Hospital of Ferrara, 620 cochlear implantations were performed. There were 426 implanted children at the time of the present study (who were <18 years). Among these, 143 patients (64 females and 79 males) presented ear and/or brain anomalies/lesions/malformations at neuroimaging investigations with MRI and HRCT. The age of the main study group (143 implanted children) ranged from 9 months and 16 years (average = 4.4; median = 3.0). Conclusions. Good outcomes with cochlear implants are possible in patients who present with inner ear or brain abnormalities, even if central nervous system anomalies represent a negative prognostic factor that is made worse by the concomitant presence of cochlear malformations. Common cavity and stenosis of the internal auditory canal (less than 2 mm) are negative prognostic factors even if brain lesions are absent

    Risk of Guillain-Barré syndrome after 2010–2011 influenza vaccination

    Get PDF
    Influenza vaccination has been implicated in Guillain Barré Syndrome (GBS) although the evidence for this link is controversial. A case–control study was conducted between October 2010 and May 2011 in seven Italian Regions to explore the relation between influenza vaccination and GBS. The study included 176 GBS incident cases aged ≥18 years from 86 neurological centers. Controls were selected among patients admitted for acute conditions to the Emergency Department of the same hospital as cases. Each control was matched to a case by sex, age, Region and admission date. Two different analyses were conducted: a matched case–control analysis and a self-controlled case series analysis (SCCS). Case–control analysis included 140 cases matched to 308 controls. The adjusted matched odds ratio (OR) for GBS occurrence within 6 weeks after influenza vaccination was 3.8 (95 % CI: 1.3, 10.5). A much stronger association with gastrointestinal infections (OR = 23.8; 95 % CI 7.3, 77.6) and influenza-like illness or upper respiratory tract infections (OR = 11.5; 95 % CI 5.6, 23.5) was highlighted. The SCCS analysis included all 176 GBS cases. Influenza vaccination was associated with GBS, with a relative risk of 2.1 (95 % CI 1.1, 3.9). According to these results the attributable risk in adults ranges from two to five GBS cases per 1,000,000 vaccinations

    Conceptual design of the enhanced coolant purification systems for the European HCLL and HCPB test blanket modules

    Get PDF
    The Coolant Purification Systems (CPSs) is one of the most relevant ancillary systems of European Helium Cooled Lead Lithium (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Modules (TBMs) which are currently in the preliminary design phase in view of their installation and operation in ITER. The CPS implements mainly two functions: the extraction and concentration of the tritium permeated from the TBM modules into the primary cooling circuit and the chemistry control of helium primary coolant. During the HCLL and HCPB-TBSs (Test Blanket Systems) Conceptual Design Review (CDR) in 2015 it was recognized the need of reducing the tritium permeation into the Port Cell #16 of ITER. To achieve this and, then, to lower the tritium partial pressure in the Helium Cooling Systems in normal operation, the helium flow-rate treated by each CPS has been increased of almost one order of magnitude. In 2017, to satisfy the CDR outcomes and the new design requirements requested by Fusion for Energy (F4E, the European Domestic Agency for ITER), ENEA performed a preliminary design of the “enhanced” CPSs. This paper presents the current design of the “enhanced” CPSs, focusing on design requirements, assumptions, selection of technologies and preliminary components sizing

    Models and experimental results from the wide aperture Nb-Ti magnets for the LHC upgrade

    Full text link
    MQXC is a Nb-Ti quadrupole designed to meet the accelerator quality requirements needed for the phase-1 LHC upgrade, now superseded by the high luminosity upgrade foreseen in 2021. The 2-m-long model magnet was tested at room temperature and 1.9 K. The technology developed for this magnet is relevant for other magnets currently under development for the high-luminosity upgrade, namely D1 (at KEK) and the large aperture twin quadrupole Q4 (at CEA). In this paper we present MQXC test results, some of the specialized heat extraction features, spot heaters, temperature sensor mounting and voltage tap development for the special open cable insulation. We look at some problem solving with noisy signals, give an overview of electrical testing, look at how we calculate the coil resistance during at quench and show that the heaters are not working We describe the quench signals and its timing, the development of the quench heaters and give an explanation of an Excel quench calculation and its comparison including the good agreement with the MQXC test results. We propose an improvement to the magnet circuit design to reduce voltage to ground values by factor 2. The program is then used to predict quench Hot-Spot and Voltages values for the D1 dipole and the Q4 quadrupole.Comment: 8 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    Novel anti-obesity quercetin-derived Q2 prevents metabolic disorders in rats fed with high-fat diet

    Get PDF
    Objective: Obesity is often accompanied by an increased morbidity and mortality due to an increase of the cardiovascular disease risk factors, diabetes mellitus and dyslipidemia. Research is constantly working on protective molecules against obesity. In the present study, a novel Quercetin derivative Q2 was synthesized to overcome the poor bioavailability and low stability of Quercetin, a natural flavonoid with antioxidative and antiobesity properties. Methods: Rats were fed (12ws) with normodiet (fat:INS; 6.2%), High Fat Diet (fat:60%), HFDINS; +INS; Q2 in water (500INS; nM). Metabolic and anthropometric parameters were measured. 3T3-L1 preadipocytes were incubated with Q2 (1-25μM) and the differentiation program was evaluated by lipid accumulation through ORO staining. Gene and protein expression levels were assessed by RT-PCR and Western blot analysis. Results: Compared to HFD, HFDINS; +INS; Q2 rats showed reduced body weight, abdominal obesity, dyslipidemia and improved glucose tolerance. This is associated to lower adipose and liver modifications compared to hypertrophy and steatosis observed in HFD. In 3T3-L1 cells, lipid accumulation was significantly impaired by treatment with Q2. Indeed, Q2 significantly decreased the expression of the main adipogenic markers, c/EBPα and PPARγ both at mRNA and protein level. Conclusions: Our results indicate that Q2 markedly decreases differentiation of 3T3-L1 preadipocytes and contributes to prevent metabolic disorders as well as adipose and liver alterations typical of severe obesity induced by a HFD
    corecore