14 research outputs found

    Association between antibody responses post-vaccination and severe COVID-19 outcomes in Scotland

    Get PDF
    Several population-level studies have described individual clinical risk factors associated with suboptimal antibody responses following COVID-19 vaccination, but none have examined multimorbidity. Others have shown that suboptimal post-vaccination responses offer reduced protection to subsequent SARS-CoV-2 infection; however, the level of protection from COVID-19 hospitalisation/death remains unconfirmed. We use national Scottish datasets to investigate the association between multimorbidity and testing antibody-negative, examining the correlation between antibody levels and subsequent COVID-19 hospitalisation/death among double-vaccinated individuals. We found that individuals with multimorbidity ( ≥ five conditions) were more likely to test antibody-negative post-vaccination and 13.37 [6.05–29.53] times more likely to be hospitalised/die from COVID-19 than individuals without conditions. We also show a dose-dependent association between post-vaccination antibody levels and COVID-19 hospitalisation or death, with those with undetectable antibody levels at a significantly higher risk (HR 9.21 [95% CI 4.63–18.29]) of these serious outcomes compared to those with high antibody levels

    Ranking the risk of animal-to-human spillover for newly discovered viruses

    Get PDF
    The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal viruses that pose the greatest risk of spillover and spread in humans and inform public health interventions. Using expert opinion and scientific evidence, we identified host, viral, and environmental risk factors contributing to zoonotic virus spillover and spread in humans. We then developed a risk ranking framework and interactive web tool, SpillOver, that estimates a risk score for wildlife-origin viruses, creating a comparative risk assessment of viruses with uncharacterized zoonotic spillover potential alongside those already known to be zoonotic. Using data from testing 509,721 samples from 74,635 animals as part of a virus discovery project and public records of virus detections around the world, we ranked the spillover potential of 887 wildlife viruses. Validating the risk assessment, the top 12 were known zoonotic viruses, including SARS-CoV-2. Several newly detected wildlife viruses ranked higher than known zoonotic viruses. Using a scientifically informed process, we capitalized on the recent wealth of virus discovery data to systematically identify and prioritize targets for investigation. The publicly accessible SpillOver platform can be used by policy makers and health scientists to inform research and public health interventions for prevention and rapid control of disease outbreaks. SpillOver is a living, interactive database that can be refined over time to continue to improve the quality and public availability of information on viral threats to human health

    Grange, Zoë

    No full text

    White and gray matter brain development in children and young adults with phenylketonuria.

    Get PDF
    Phenylketonuria (PKU) is a recessive disorder characterized by disruption in the metabolism of the amino acid phenylalanine (Phe). Prior research indicates that individuals with PKU have substantial white matter (WM) compromise. Much less is known about gray matter (GM) in PKU, but a small body of research suggests volumetric differences compared to controls. To date, developmental trajectories of GM structure in individuals with PKU have not been examined, nor have trajectories of WM and GM been examined within a single study. To address this gap in the literature, we compared longitudinal brain development over a three-year period in individuals with PKU (n = 35; 18 male) and typically-developing controls (n = 71; 35 male) aged 7-21 years. Using diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI), we observed whole-brain and regional WM differences between individuals with PKU and controls, which were often exacerbated with increasing age. In marked contrast with trajectories of WM development, trajectories of GM development did not differ between individuals with PKU and controls, indicating that neuropathology in PKU is more prominent in WM than GM. Within individuals with PKU, mediation analyses revealed that whole-brain mean diffusivity (MD) and regional MD in the corpus callosum and centrum semiovale mediated the relationship between dietary treatment compliance (i.e., Phe control) and executive abilities, suggesting a plausible neurobiological mechanism by which Phe control may influence cognitive outcomes. Our findings clarify the specificity, timing, and cognitive consequences of whole-brain and regional WM pathology, with implications for treatment and research in PKU

    Association between antibody responses post-vaccination and severe COVID-19 outcomes in Scotland

    No full text
    Several population-level studies have described individual clinical risk factors associated with suboptimal antibody responses following COVID-19 vaccination, but none have examined multimorbidity. Others have shown that suboptimal post-vaccination responses offer reduced protection to subsequent SARS-CoV-2 infection; however, the level of protection from COVID-19 hospitalisation/death remains unconfirmed. We use national Scottish datasets to investigate the association between multimorbidity and testing antibody-negative, examining the correlation between antibody levels and subsequent COVID-19 hospitalisation/death among double-vaccinated individuals. We found that individuals with multimorbidity ( ≥ five conditions) were more likely to test antibody-negative post-vaccination and 13.37 [6.05–29.53] times more likely to be hospitalised/die from COVID-19 than individuals without conditions. We also show a dose-dependent association between post-vaccination antibody levels and COVID-19 hospitalisation or death, with those with undetectable antibody levels at a significantly higher risk (HR 9.21 [95% CI 4.63–18.29]) of these serious outcomes compared to those with high antibody levels

    Association between antibody responses post-vaccination and severe COVID-19 outcomes in Scotland

    No full text
    Several population-level studies have described individual clinical risk factors associated with suboptimal antibody responses following COVID-19 vaccination, but none have examined multimorbidity. Others have shown that suboptimal post-vaccination responses offer reduced protection to subsequent SARS-CoV-2 infection; however, the level of protection from COVID-19 hospitalisation/death remains unconfirmed. We use national Scottish datasets to investigate the association between multimorbidity and testing antibody-negative, examining the correlation between antibody levels and subsequent COVID-19 hospitalisation/death among double-vaccinated individuals. We found that individuals with multimorbidity (≥ five conditions) were more likely to test antibody-negative post-vaccination and 13.37 [6.05–29.53] times more likely to be hospitalised/die from COVID-19 than individuals without conditions. We also show a dose-dependent association between post-vaccination antibody levels and COVID-19 hospitalisation or death, with those with undetectable antibody levels at a significantly higher risk (HR 9.21 [95% CI 4.63–18.29]) of these serious outcomes compared to those with high antibody levels.</p
    corecore