22 research outputs found

    The Paradox of Muscle Hypertrophy in Muscular Dystrophy

    Get PDF
    Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans and syndromes in mice, dogs, and cats. Affected humans and dogs have progressive disease that leads primarily to muscle atrophy. Mdx mice progress through an initial phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. Hypertrophy in humans has been attributed to deposition of fat and connective tissue (pseudohypertrophy). Increased muscle mass (true hypertrophy) has been documented in animal models. Muscle hypertrophy can exaggerate postural instability and joint contractures. Deleterious consequences of muscle hypertrophy should be considered when developing treatments for muscular dystrophy

    Regulation of tomato fruit growth by epidermal cell wall enzymes

    No full text
    Water relations of tomato fruit and the epidermal and pericarp activities of the putative cell wall loosening and tightening enzymes Xyloglucan endotransglycosylase (XET) and peroxidase were investigated, to determine whether tomato fruit growth is principally regulated in the epidermis or pericarp. Analysis of the fruit water relations and observation of the pattern of expansion of tomato fruit slices in vitro, has shown that the pericarp exerts tissue pressure on the epidermis in tomato fruit, suggesting that the rate of growth of tomato fruit is determined by the physical properties of the epidermal cell walls. The epidermal activities of XET and peroxidase were assayed throughout fruit development. Temporal changes in these enzyme activities were found to correspond well with putative cell wall loosening and stiffening during fruit development. XET activity was found to be proportional to the relative expansion rate of the fruit until growth ceased, and a peroxidase activity weakly bound to the epidermal cell wall appeared shortly before cessation of fruit expansion. No equivalent peroxidase activity was detected in pericarp tissue of any age. It is therefore plausible that the expansion of tomato fruit is regulated by the combined action of these enzyme activities in the fruit epidermis
    corecore