153 research outputs found

    Evidence for a Novel, Caspase-8-Independent, Fas Death Domain-Mediated Apoptotic Pathway

    Get PDF
    Certain caspase-8 null cell lines demonstrate resistance to Fas-induced apoptosis, indicating that the Fas/FasL apoptotic pathway may be caspase-8-dependent. Some reports, however, have shown that Fas induces cell death independent of caspase-8. Here we provide evidence for an alternative, caspase-8-independent, Fas death domain-mediated apoptotic pathway. Murine 12B1-D1 cells express procaspase-3, -8, and -9, which were activated upon the dimerization of Fas death domain. Bid was cleaved and mitochondrial transmembrane potential was disrupted in this apoptotic process. All apoptotic events were completely blocked by the broad-spectrum caspase inhibitor Z-VAD-FMK, but not by other peptide caspase inhibitors. Cyclosporin A (CsA), which inhibits mitochondrial transition pore permeability, blocked neither pore permeability disruption nor caspase activation. However, CsA plus caspase-8 inhibitor blocked all apoptotic events of 12B1-D1 induced by Fas death domain dimerization. Our data therefore suggest that there is a novel, caspase-8-independent, Z-VAD-FMK-inhibitable, apoptotic pathway in 12B1-D1 cells that targets mitochondria directly

    Aerosolized In Vivo 3D Localization of Nose-to-Brain Nanocarrier Delivery Using Multimodality Neuroimaging in a Rat Modelā€”Protocol Development

    Get PDF
    The fate of intranasal aerosolized radiolabeled polymeric micellar nanoparticles (LPNPs) was tracked with positron emission tomography/computer tomography (PET/CT) imaging in a rat model to measure nose-to-brain delivery. A quantitative temporal and spatial testing protocol for new radio-nanotheranostic agents was sought in vivo. LPNPs labeled with a zirconium 89 (89Zr) PET tracer were administered via intranasal or intravenous delivery, followed by serial PET/CT imaging. After 2 h of continuous imaging, the animals were sacrificed, and the brain substructures (olfactory bulb, forebrain, and brainstem) were isolated. The activity in each brain region was measured for comparison with the corresponding PET/CT region of interest via activity measurements. Serial imaging of the LPNPs (100 nm PLAā€“PEGā€“DSPE+89Zr) delivered intranasally via nasal tubing demonstrated increased activity in the brain after 1 and 2 h following intranasal drug delivery (INDD) compared to intravenous administration, which correlated with ex vivo gamma counting and autoradiography. Although assessment of delivery from nose to brain is a promising approach, the technology has several limitations that require further development. An experimental protocol for aerosolized intranasal delivery is presented herein, which may provide a platform for better targeting the olfactory epithelium

    The role of antibodies in the pathogenesis of multiple sclerosis

    Get PDF
    The presence of persistent intrathecal oligoclonal immunoglobulin G (IgG) bands (OCBs) and lesional IgG deposition are seminal features of multiple sclerosis (MS) disease pathology. Despite extensive investigations, the role of antibodies, the products of mature CD19+ B cells, in disease development is still controversial and under significant debate. Recent success of B cell depletion therapies has revealed that CD20+ B cells contribute to MS pathogenesis via both antigen-presentation and T-cell-regulation. However, the limited efficacy of CD20+ B cell depletion therapies for the treatment of progressive MS indicates that additional mechanisms are involved. In this review, we present findings suggesting a potential pathological role for increased intrathecal IgGs, the relation of circulating antibodies to intrathecal IgGs, and the selective elevation of IgG1 and IgG3 subclasses in MS. We propose a working hypothesis that circulating B cells and antibodies contribute significantly to intrathecal IgGs, thereby exerting primary and pathogenic effects in MS development. Increased levels of IgG1 and IgG3 antibodies induce potent antibody-mediated cytotoxicity to central nervous system (CNS) cells and/or reduce the threshold required for antigen-driven antibody clustering leading to optimal activation of immune responses. Direct proof of the pathogenic roles of antibodies in MS may provide opportunities for novel blood biomarker identification as well as strategies for the development of effective therapeutic interventions

    Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage

    Get PDF
    Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme, NADP-ME, and pyruvate dehydrogenase, PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase, CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase,ALDH, ascorbate-dependent oxidoreductase, ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8, HSP17.8, and dehydrin 3, DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were possibly constitutively expressed in drought-tolerant genotypes. Among them, seven known annotated genes might enhance drought tolerance through signalling [such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP)], anti-senescence (G2 pea dark accumulated protein, GDA2), and detoxification (glutathione S-transferase, GST) pathways. In addition, 18 genes, including those encoding Ī”l-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C), and several chaperones, were differentially expressed in all genotypes under drought; thus they were more likely to be general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley

    De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>De novo </it>sequencing the entire genome of a large complex plant genome like the one of barley (<it>Hordeum vulgare </it>L.) is a major challenge both in terms of experimental feasibility and costs. The emergence and breathtaking progress of next generation sequencing technologies has put this goal into focus and a clone based strategy combined with the 454/Roche technology is conceivable.</p> <p>Results</p> <p>To test the feasibility, we sequenced 91 barcoded, pooled, gene containing barley BACs using the GS FLX platform and assembled the sequences under iterative change of parameters. The BAC assemblies were characterized by N50 of ~50 kb (N80 ~31 kb, N90 ~21 kb) and a Q40 of 94%. For ~80% of the clones, the best assemblies consisted of less than 10 contigs at 24-fold mean sequence coverage. Moreover we show that gene containing regions seem to assemble completely and uninterrupted thus making the approach suitable for detecting complete and positionally anchored genes.</p> <p>By comparing the assemblies of four clones to their complete reference sequences generated by the Sanger method, we evaluated the distribution, quality and representativeness of the 454 sequences as well as the consistency and reliability of the assemblies.</p> <p>Conclusion</p> <p>The described multiplex 454 sequencing of barcoded BACs leads to sequence consensi highly representative for the clones. Assemblies are correct for the majority of contigs. Though the resolution of complex repetitive structures requires additional experimental efforts, our approach paves the way for a clone based strategy of sequencing the barley genome.</p

    Varicella-Zoster virus infected human neurons are resistant to apoptosis

    Get PDF
    Varicella-zoster virus (VZV) is a pathogenic human herpesvirus that causes varicella (chickenpox) as a primary infection following which it becomes latent in ganglionic neurons. Following viral reactivation many years later VZV causes herpes zoster (shingles) as well as a variety of other neurological syndromes. The molecular mechanisms of the conversion of the virus from a lytic to a latent state in ganglia are not well understood. In order to gain insights into the neuron-virus interaction, we studied virus-induced apoptosis in cultures of both highly pure terminally differentiated human neurons and human fetal lung fibroblasts (HFL). It was found that (a) VZV DNA did not accumulate in infected human neurons; (b) VZV transcripts were present at lower levels at all days studied post-infection in neurons; (c) Western blot analysis showed less VZV IE 63 and very little detectable VZV gE proteins in infected neurons compared with HFL; (d) lower levels of the apoptotic marker cleaved Caspase-3 protein were detected in VZV-infected neurons compared with HFL, and higher levels of the known anti-apoptotic proteins Bcl2, Bcl-XL and also the mitochondrial MT-CO2 protein were found in VZV-infected neurons compared with uninfected cells; and (e) both the MT-CO2 protein and VZV IE 63-encoded protein were detected in infected neurons by dual immunofluorescence. These findings showed that neurons are resistant to VZV-induced apoptosis, which may have relevance to the switching of VZV from a lytic to latent ganglionic neuronal infection
    • ā€¦
    corecore