3 research outputs found

    The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice

    Get PDF
    AbstractDouble-strand DNA breaks (DSB) induce chromosomal translocations and gene amplification in cell culture, but mechanisms by which DSB cause genomic instability in vivo are poorly understood. We show that RAG-1/2-induced DSB cause IgH/c-Myc translocations in leukemic pro-B cells from p53/Prkdc-deficient mice. Strikingly, these translocations were complex, clonally heterogeneous and amplified. We observed reiterated IgH/c-Myc fusions on dicentric chromosomes, suggesting that amplification occurred by repeated cycles of bridge, breakage and fusion. Leukemogenesis was not mitigated in RAG-2/p53/Prkdc-deficient mice, but leukemic pro-B cells lacked IgH/c-Myc translocations. Thus, global genomic instability conferred by p53/Prkdc disruption efficiently transforms pro-B cells lacking RAG-1/2-induced DSB. Unexpectedly, RAG-2/p53/Prkdc-deficient mice also developed leptomeningeal leukemia, providing a novel spontaneous model for this frequent complication of human lymphoblastic malignancies

    Multiomic Profiling of Central Nervous System Leukemia Identifies mRNA Translation as a Therapeutic Target

    No full text
    Central nervous system (CNS) dissemination of B-precursor acute lymphoblastic leukemia (B-ALL) has poor prognosis and remains a therapeutic challenge. Here we performed targeted DNA sequencing as well as transcriptional and proteomic profiling of paired leukemia-infiltrating cells in the bone marrow (BM) and CNS of xenografts. Genes governing mRNA translation were upregulated in CNS leukemia, and subclonal genetic profiling confirmed this in both BM-concordant and BM-discordant CNS mutational populations. CNS leukemia cells were exquisitely sensitive to the translation inhibitor omacetaxine mepesuccinate, which reduced xenograft leptomeningeal disease burden. Proteomics demonstrated greater abundance of secreted proteins in CNS-infiltrating cells, including complement component 3 (C3), and drug targeting of C3 influenced CNS disease in xenografts. CNS-infiltrating cells also exhibited selection for stemness traits and metabolic reprogramming. Overall, our study identifies targeting of mRNA translation as a potential therapeutic approach for B-ALL leptomeningeal disease. SIGNIFICANCE: Cancer metastases are often driven by distinct subclones with unique biological properties. Here we show that in B-ALL CNS disease, the leptomeningeal environment selects for cells with unique functional dependencies. Pharmacologic inhibition of mRNA translation signaling treats CNS disease and offers a new therapeutic approach for this condition. This article is highlighted in the In This Issue feature, p.
    corecore