935 research outputs found

    Exact solutions in a scalar-tensor model of dark energy

    Full text link
    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.Comment: 30 pages, 2 figures, to appear in JCA

    On the Ricci dark energy model

    Full text link
    We study the Ricci dark energy model (RDE) which was introduced as an alternative to the holographic dark energy model. We point out that an accelerating phase of the RDE is that of a constant dark energy model. This implies that the RDE may not be a new model of explaining the present accelerating universe.Comment: 8 page

    Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity

    Full text link
    We consider the asymptotic-safety scenario for quantum gravity which constructs a non-perturbatively renormalisable quantum gravity theory with the help of the functional renormalisation group. We verify the existence of a non-Gaussian fixed point and include a running curvature-ghost coupling as a first step towards the flow of the ghost sector of the theory. We find that the scalar curvature-ghost coupling is asymptotically free and RG relevant in the ultraviolet. Most importantly, the property of asymptotic safety discovered so far within the Einstein-Hilbert truncation and beyond remains stable under the inclusion of the ghost flow.Comment: 8 pages, 3 figures, RevTe

    Non-minimal kinetic coupling and Chaplygin gas cosmology

    Full text link
    In the frame of the scalar field model with non minimal kinetic coupling to gravity, we study the cosmological solutions of the Chaplygin gas model of dark energy. By appropriately restricting the potential, we found the scalar field, the potential and coupling giving rise to the Chaplygin gas solution. Extensions to the generalized and modified Chaplygin gas have been made.Comment: 18 pages, 2 figures. To appear in EPJ

    Reconstructing the potentials for the quintessence and tachyon dark energy, from the holographic principle

    Full text link
    We propose an holographic quintessence and tachyon models of dark energy. The correspondence between the quintessence and tachyon energy densities with the holographic density, allows the reconstruction of the potentials and the dynamics for the quintessence and tachyon fields, in flat FRW background. The proposed infrared cut-off for the holographic energy density works for two cases of the constant α\alpha: for α<1\alpha<1 we reconstructed the holographic quintessence model in the region before the ω=1\omega=-1 crossing for the EoS parameter. The cosmological dynamics for α>1\alpha>1 was also reconstructed for the holographic quintessence and tachyon models.Comment: 21 pages, 18 figures, 2 table

    New lanthanide phosphonates structures obtained using XRPD data

    Get PDF
    5 páginas, 2 figuras, 3 tablas.-- Trabajo presentado como póster a la 12th European Powder Diffraction Conference (EPDIC 2010).-- et al.Seven lanthanide diphosphonates, [H3N(CH2)4NH3]Ln[hedpH][hedpH2] (Ln = La, Pr, Sm, Eu, Gd, Tb, Er; hedp = 1 hydroxyethylidenediphosphonate) have been synthesized with 1,4-diaminobutane as the template. The structures were obtained starting from the known X-ray single crystal model of lanthanum compound, with the X-ray powder diffraction data for these seven compounds. H-atoms were introduced using geometrical considerations. Rietveld fits of the experimental diffractograms confirm the isostructurality of all compounds in the series, and show the different behaviour between the two distances M-M existing in the structures.Financial support from Spanish MICINN (MAT2006-01997, MAT2010-15095 and ‘Factoría de Cristalización’ Consolider Ingenio 2010), Un-iversidad de Oviedo and Banco Santander is acknowledged. FEDER support is also acknowledged.Peer reviewe

    Exact Renormalization Group and Running Newtonian Coupling in Higher Derivative Gravity

    Get PDF
    We discuss exact renormalization group (RG) in R2R^2-gravity using effective average action formalism. The truncated evolution equation for such a theory on De Sitter background leads to the system of nonperturbative RG equations for cosmological and gravitational coupling constants. Approximate solution of these RG equations shows the appearence of antiscreening and screening behaviour of Newtonian coupling what depends on higher derivative coupling constants.Comment: Latex file, 9 page

    Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems

    Get PDF
    © 2014 The Authors. Winter cold limits temperate plant performance, as does summer water stress in drought-prone ecosystems. The relative impact of seasonal extremes on plant performance has received considerable attention for individual systems. An integrated study compiling the existing literature was needed to identify overall trends. First, we conducted a meta-analysis of the impacts of summer and winter on ecophysiology for three woody plant functional types (winter deciduous angiosperms, evergreen angiosperms and conifers), including data for 210 records from 75 studies of ecosystems with and without summer drought across the temperate zone. Second, we tested predictions by conducting a case study in a drought-prone Mediterranean ecosystem subject to winter freezing. As indicators of physiological response of leaves and xylem to seasonal stress, we focused on stomatal conductance (gs), percent loss of stem xylem hydraulic conductivity (PLC) and photochemical efficiency of photosystem II (Fv/Fm). Our meta-analysis showed that in ecosystems without summer drought, gs was higher during summer than winter. By contrast, in drought-prone ecosystems many species maintained open stomata during winter, with potential strong consequences for plant carbon gain over the year. Further, PLC tended to increase and Fv/Fm to decrease from summer to winter for most functional types and ecosystems due to low temperatures. Overall, deciduous angiosperms were most sensitive to climatic stress. Leaf gas exchange and stem xylem hydraulics showed a coordinated seasonal response at ecosystems without summer drought. In our Mediterranean site subjected to winter freezing the species showed similar responses to those typically found for ecosystems without summer drought. We conclude that winter stress is most extreme for systems without summer drought and systems with summer drought and winter freezing, and less extreme for drought-prone systems without freezing. In all cases the evergreen species show less pronounced seasonal responses in both leaves and stems than deciduous species.Th is research was supported by the Spanish Ministry of Economy and Competitiveness with the grants FPI (CGL2007-66066-C04-02), Consolider Montes (CSD2008 00040) and VULGLO (CGL2010 22180 C03 03), and by the Community of Madrid grant REMEDINAL 2 (CM S2009 AMB 1783) and National Science Foundation Grant no. 0546784.Peer Reviewe

    Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices

    Get PDF
    Super-resolution is a fundamental task in imaging, where the goal is to extract fine-grained structure from coarse-grained measurements. Here we are interested in a popular mathematical abstraction of this problem that has been widely studied in the statistics, signal processing and machine learning communities. We exactly resolve the threshold at which noisy super-resolution is possible. In particular, we establish a sharp phase transition for the relationship between the cutoff frequency (mm) and the separation (Δ\Delta). If m>1/Δ+1m > 1/\Delta + 1, our estimator converges to the true values at an inverse polynomial rate in terms of the magnitude of the noise. And when m<(1ϵ)/Δm < (1-\epsilon) /\Delta no estimator can distinguish between a particular pair of Δ\Delta-separated signals even if the magnitude of the noise is exponentially small. Our results involve making novel connections between {\em extremal functions} and the spectral properties of Vandermonde matrices. We establish a sharp phase transition for their condition number which in turn allows us to give the first noise tolerance bounds for the matrix pencil method. Moreover we show that our methods can be interpreted as giving preconditioners for Vandermonde matrices, and we use this observation to design faster algorithms for super-resolution. We believe that these ideas may have other applications in designing faster algorithms for other basic tasks in signal processing.Comment: 19 page

    Quantum Gravity effects near the null black hole singularity

    Get PDF
    The structure of the Cauchy Horizon singularity of a black hole formed in a generic collapse is studied by means of a renormalization group equation for quantum gravity. It is shown that during the early evolution of the Cauchy Horizon the increase of the mass function is damped when quantum fluctuations of the metric are taken into account.Comment: 15 Pages, one figure. Minor changes in the presentation, to appear on Phys.Rev.
    corecore