3,498 research outputs found

    The energy transport by the propagation of sound waves in wave guides with a moving medium

    Get PDF
    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity. This article gives the calculation of the energy transport in the wave guides.\ud \ud It is shown that it is not possible to gain energy from infinity

    Iterative solution of a discrete axially symmetric potential problem

    Get PDF
    The Dirichlet problem for the axially symmetric potential equation in a cylindrical domain is discretized by means of a five-point difference approximation. The resulting difference equation is solved by point or line iterative methods. The rate of convergence of these methods is determined by the spectral radius of the underlying point or line Jacobi matrix. An asymptotic approximation for this spectral radius, valid for small mesh size, is derived

    Water Resources Control Board

    Get PDF

    Full-waveform inversion of triplicated data using a normalized-correlation-coefficient-based misfit function

    Get PDF
    In seismic full-waveform inversion (FWI), the choice of misfit function determines what information in data is used and ultimately affects the resolution of the inverted images of the Earth's structure. Misfit functions based on traveltime have been successfully applied in global and regional tomographic studies. However, wave propagation through the upper mantle results in multiple phases arriving at a given receiver in a narrow time interval resulting in complicated waveforms that evolve with distance. To extract waveform information as well as traveltime, we use a misfit function based on the normalized correlation coefficient (CC). This misfit function is able to capture the waveform complexities in both phase and relative amplitude within the measurement window. It is also insensitive to absolute amplitude differences between modeled and recorded data, which avoids problems due to uncertainties in source magnitude, radiation pattern, receiver site effects or even miscalibrated instruments. These features make the misfit function based on normalized CC a good candidate to achieve high-resolution images of complex geological structures when interfering phases coexist in the measurement window, such as triplication waveforms. From synthetic tests, we show the advantages of this misfit function over the cross-correlation traveltime misfit function. Preliminary inversion of data from an earthquake in Northeast China images a sharper and stronger amplitude slab stagnant in the middle of the transition zone than FWI of cross-correlation traveltime

    X-ray response of tunnel junctions with a trapping layer

    Get PDF
    The use of trapping layers in superconductive tunnel junctions may drastically improve their functioning as X-ray detectors. Information about these trapping layers can be obtained from I/V-curves and X-ray spectra. The application of a magnetic field causes a substantial reduction of the bandgap in the trapping layer

    Correction of flotation coefficients, derived from ultracentrifugation, for pressure and concentration

    Get PDF
    Flotation coefficients are usually determined from data obtained under high pressure (cell bottom) conditions. A power series expansion is proposed for correction to atmospheric pressure (meniscus) conditions. The same expansion may be applied to the concentration correction of flotation coefficients

    Calcium-mediated stabilisation of soil organic carbon

    Get PDF
    Soils play an essential role in the global cycling of carbon and understanding the stabilisation mechanisms behind the preservation of soil organic carbon (SOC) pools is of globally recognised significance. Until recently, research into SOC stabilisation has predominantly focused on acidic soil environments and the interactions between SOC and aluminium (Al) or iron (Fe). The interactions between SOC and calcium (Ca) have typically received less attention, with fewer studies conducted in alkaline soils. Although it has widely been established that exchangeable Ca (CaExch) positively correlates with SOC concentration and its resistance to oxidation, the exact mechanisms behind this relationship remain largely unidentified. This synthesis paper critically assesses available evidence on the potential role of Ca in the stabilisation of SOC and identifies research topics that warrant further investigation. Contrary to the common view of the chemistry of base cations in soils, chemical modelling indicates that Ca2+ can readily exchange its hydration shell and create inner sphere complexes with organic functional groups. This review therefore argues that both inner- and outer-sphere bridging by Ca2+ can play an active role in the stabilisation of SOC. Calcium carbonate (CaCO3) can influence occluded SOC stability through its role in the stabilisation of aggregates; however, it could also play an unaccounted role in the direct sorption and inclusion of SOC. Finally, this review highlights the importance of pH as a potential predictor of SOC stabilisation mechanisms mediated by Al- or Fe- to Ca, and their respective effects on SOC dynamics
    corecore