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Abstract--Flotation coefficients are usually determined from data obtained under high pressure (cell 
bottom) conditions. A power series expansion is proposed for correction to atmospheric pressure 
(meniscus) conditions. The same expansion may be applied to the concentration correction of flotation 
coefficients. 

From sedimentation experiments with polymer sol- 
utions in the analytical ultracentrifuge, we can derive 
sedimentation coefficients of the polymeric com- 
ponent. A widely applied procedure is to identify the 
sedimentation coefficient with the slope of the best 
straight line through the data points In x* and 26o2t 
(where co = angular speed in radians per second, 
t = time in sec, x* = (r*/r,.) 2, r* = distance of the top 
of the Schlieren peak to the centre of rotation, 
r,, = distance of the meniscus to the centre of rota- 
tion). 

This procedure leads to sedimentation coefficients 
which depend on the concentration, and are not cor- 
rected to the pressure at the meniscus (where 
p = 1 arm.). We will denote such an uncorrected sedi- 
mentation coefficient by s. Several procedures have 
been developed to obtain "true" sedimentation coeffi- 
cients, corrected for pressure and concentration [1-4]. 
These procedures apply to dilute solutions. 

When the solvent is heavier than the polymer, flota- 
tion occurs. Now the boundary layer travels from the 
high pressure region (where the pressure is of the 
order of 100 atm.) at the cell's bottom towards the low 
pressure region near the meniscus. The procedures for 
correction for pressure which apply to sedimentation 
do not hold for flotation. The reason is that correc- 
tions for pressure have to be carried out for a region 
in the cell where the boundary layer has not pro- 
ceeded "too far" away from its starting point (the 
meniscus, for sedimentation; the bottom for flotation). 
This is connected with the requirement that the time 
parameter r - 2So6o2t (where So is the "true" sedimen- 
tation coefficient) should not be "too far" from zero 
[1]. As for r --~ 0 in the flotation case, the boundary is 
still in the high pressure region; in contrast with the 
sedimentation case, we cannot use the correction pro- 
cedures of sedimentation for flotation without appro- 
priate modification. 

As far as we are aware, no proposals for the correc- 
tion of flotation coefficients (needed for a study on 
permeability [6]) have been published. Pouyet and 
Dayantis [5] suppose for their semi-dilute solutions 
(concentration > say 2~o) that the pressure effect 
affects all flotation coefficients to the same extent, i.e. 
as if all the concentrations were multiplied by the 
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same (compression) factor. In a plot of log [s f vs log c 
this would result in a shift to the right of the whole 
plot, without any influence on the slope of the straight 
line which is characteristic for the dependence of log 
fsJ on log c in the semi-dilute region. In this paper we 
consider in more detail if the latter conclusions can be 
justified by a less qualitative reasoning. We start from 
the correction procedure of Dishon et at. [1] for sedi- 
mentation coefficients obtained in dilute solution. 

Dishon et al. [1] wrote the solution of the (diffusion 
free) differential equation describing the sedimentation 
process (the so-called Lamm equation) as a series 
expansion in powers of the time parameter ~. It holds 
only for 3 - - ,0 :  

lnx* = r/(~ + i) (2~ + 1)m - ~r2 + 0( .c3}  (1) 
2(~ + 1) 3 

where 

z = 26o 2 So t 

= k~c (ks = concentration effect parameter) 

m = pressure effect parameter. 

(We have not written out the clumsy third power term 
in fulk it should not be neglected however.) 

The essential point in the derivation of (1) is the 
assumption 

So 
s = s(p, c) = 

(1 + k~c) (1 - m + mx*)  

s(p, 0) s(1, c) 

= I + ksc 1 - m  + mx*  (2) 

where the effects of pressure and concentration are 
separated; s(p, 0) being the pressure dependent sedi- 
mentation coefficient corrected to zero concentration, 
and s(l,c) being concentration dependent, but cor- 
rected to meniscus conditions were p = 1 atm. 

From equation (1) we can see that correction for 
pressure and concentration can be carried out inde- 
pendently. An easy correction for pressure for 
instance is to identify s(l, c) with the initial slope of 
the plot of ln  x* vs 26o2t. The thus obtained s(l, c) can 
be corrected further for the effect of concentration by 
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plotting Us(l, c) vs c. The intercept is 1~So and from 
the slope we can calculate the concentration depen- 
dence parameter k~: 

Us(l, c) = (1/So)(1 + ksc). (3) 

A more precise procedure would be to calculate the 
coefficients of a cubic polynomial in (2co2t) by a least 
squares approximation; the time t should be taken 
with respect to a starting time to. A good approxi- 
mation for to is the abcis intercept of the straight line 
through (r* - r,,) plotted vs t~ (=  the time of the i-th 
photographed Schlieren peak with respect to the 
moment when the first peak was photographed). 

We applied the method of Dishon et al., with the 
assumption (2), to flotation essentially by writing the 
value of their function 

h(x*) -= x*/(l - m + rex*) at z = 0 not as 1, but as, 
h~=o = q/(1 - m + mq), where q = (rb/rra)2; rb is the 
distance of the bot tom of the cell to the centre of 
rotation. Furthermore, we introduced the distance 
parameter 

x' = (r*/rb) 2 = x*/q. 

Thus, we derived as the flotation equivalent of (1) 
(also for r---~ 0): 

h 2 h3(20chl + hhl - h 2 - och)r2 
l n x ' =  - - r  + 

qlh + :0 2q2(h + :0 3 

+ O(z 3) (4) 

where 

h = h~_o = q/(1 - m +  mq) 

_ q(1 - m )  (1 - m + m q )  2. 
hi = q ( 1 -  m) hi (1 - - m +  mqj 2" 

Again, we have omitted the clumsy third power term: 
note that insertion of q = 1 in (4) gives (1), as required. 

The expansion (4) does not allow ~ to be determined 
independently of m, the slope s~ of the initial tangent 
to the plot of In x' vs 2e)2t must according to (4) be 
written as 

So h 
(5) 

Thus, flotation coefficients corrected for pressure, 
but still dependent on concentration, are not obtained 
from the initial slopes (as was the case for sedimenta- 
tion). 

The conclusions of Pouyet and Dayantis [5] that in 
the semi-dilute region the slope of the l o g l s l - l o g c  
plot is not affected by the pressure effect now may be 
justified by extrapolating: (a) the validity of the 
assumption (2) and the Lamm equation to the semi- 
dilute region, and (b) the validity of Eqns (4) and (5) 
to the semi-dilute region (provided that for all experi- 
ments at all concentrations q has the same value, that 
m does not depend on concentration, and that also 
:~/h is nearly constant). Typical values of m and q are 
1.0 and 17.2/5.9) 2 = 1.5, respectively. This leads for 

= 0 to So -- 1.5 s, a much larger pressure effect cor- 

rection to s than the corrections, obtained usually for 
sedimentation coefficients. 

In order to obtain an idea of the order of magni- 
tude for the correction of a flotation coefficient of a 
real system, we also supposed ct to be zero for the 
most dilute concentration. Then, we calculated m and 
So from the first and the second coefficient of the 
cubic polynomial through In x' and (2co2t). Then we 
plotted the reciprocals of the first coefficients of the 
other concentrations vs c and calculated ks and the 
true flotation coefficient So from: 

k~ - q (slope) (6) 
1 + m(q - 1) (intercept) 

So = I1 + m(q - l)I/(intercept). (7) 

The use of this procedure presupposes that m has 
been determined accurately enough for the most 
dilute solution, and that it remains constant over the 
whole concentration region. As we were only inter- 
ested in an order of magnitude of the corrections for s 
and ks, we did not construct a more accurate iterative 
procedure. Experimental details have been given [6]. 

For  the flotating system poly(2,6-dimethyl-l,4-phe- 
nylene oxide) of Mw 87,000 in trichloroethylene at 25 °, 
we thus calculated s (p ,0 )=  2.29 (Svedberg) and 
So = 2.70, with m = 0.5. For  the same system at 35 ° 
we found s(p, 0) = 2.58 and So = 3.20, with m = 1.1. 
At both temperatures, the correction for pressure 
adds about 20~o to s(p, 0). The difference found for m 
is not a consequence of the temperature difference, 
but of the poor reproducibility of the assessment of 
the first and the second coefficients of Eqn (3). 

The values obtained for this system for m are in 
accordance with values for m, determined by others 
for other polymers in chlorinated hydrocarbon sol- 
vents 1-4]. From equation (1) we found for the above 
mentioned polymer in toluene solution at 25 c (where 
sedimentation occurs) s(p, 0 ) =  3.12 (Svedberg) and 
so = 3.23, with m = 0.7 (in agreement with findings 
for other polymers in toluene [2, 3]). 

For  the flotation case we found k~ = 117 (ml/g) at 
25 ° by means of the procedure outlined above, 
whereas for uncorrected s it was 111 (ml/g). This dif- 
ference is not significant, however; it depends strongly 
on the experimental uncertainty in m [cf. Eqn (6)]. 
Thus, at 35 ° we found k~ = 89 (ml/g) from Eqn (6) and 
k~ = 118 (ml/g) from uncorrected s values. 
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