846 research outputs found

    Phase transitions in the one-dimensional frustrated quantum XY model and Josephson-junction ladders

    Full text link
    A one-dimensional quantum version of the frustrated XY (planar rotor) model is considered which can be physically realized as a ladder of Josephson-junctions at half a flux quantum per plaquette. This system undergoes a superconductor to insulator transition at zero temperature as a function of charging energy. The critical behavior is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. Depending on the ratio between the interchain and intrachain couplings the system can have single or double transitions which is consistent with the prediction that its critical behavior should be described by the two-dimensional classical XY-Ising model.Comment: 13 pages, Revtex, J. Appl. Phys. (to appear), Inpe-las-00

    Equilibrium Shape and Size of Supported Heteroepitaxial Nanoislands

    Full text link
    We study the equilibrium shape, shape transitions and optimal size of strained heteroepitaxial nanoislands with a two-dimensional atomistic model using simply adjustable interatomic pair potentials. We map out the global phase diagram as a function of substrate-adsorbate misfit and interaction. This phase diagram reveals all the phases corresponding to different well-known growth modes. In particular, for large enough misfits and attractive substrate there is a Stranski-Krastanow regime, where nano-sized islands grow on top of wetting films. We analyze the various terms contributing to the total island energy in detail, and show how the competition between them leads to the optimal shape and size of the islands. Finally, we also develop an analytic interpolation formula for the various contributions to the total energy of strained nanoislands.Comment: 9 pages, 7 figure

    Phase-coherence threshold and vortex-glass state in diluted Josephson-junction arrays in a magnetic field

    Full text link
    We study numerically the interplay of phase coherence and vortex-glass state in two-dimensional Josephson-junction arrays with average rational values of flux quantum per plaquette ff and random dilution of junctions. For f=1/2f=1/2, we find evidence of a phase coherence threshold value xsx_s, below the percolation concentration of diluted junctions xpx_p, where the superconducting transition vanishes. For xs<x<xpx_s < x < x_p the array behaves as a zero-temperature vortex glass with nonzero linear resistance at finite temperatures. The zero-temperature critical currents are insensitive to variations in ff in the vortex glass region while they are strongly ff dependent in the phase coherent region.Comment: 6 pages, 4 figures, to appear in Phys. Rev.

    Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

    Get PDF
    We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review

    Equilibrium shape and dislocation nucleation in strained epitaxial nanoislands

    Full text link
    We study numerically the equilibrium shapes, shape transitions and dislocation nucleation of small strained epitaxial islands with a two-dimensional atomistic model, using simple interatomic pair potentials. We first map out the phase diagram for the equilibrium island shapes as a function of island size (up to N = 105 atoms) and lattice misfit with the substrate and show that nanoscopic islands have four generic equilibrium shapes, in contrast with predictions from the continuum theory of elasticity. For increasing substrate-adsorbate attraction, we find islands that form on top of a finite wetting layer as observed in Stranski-Krastanow growth. We also investigate energy barriers and transition paths for transitions between different shapes of the islands and for dislocation nucleation in initially coherent islands. In particular, we find that dislocations nucleate spontaneously at the edges of the adsorbate-substrate interface above a critical size or lattice misfit.Comment: 4 pages, 3 figures, uses wrapfig.sty and epsfig.st

    Nonlinear sliding friction of adsorbed overlayers on disordered substrates

    Full text link
    We study the response of an adsorbed monolayer on a disordered substrate under a driving force using Brownian molecular-dynamics simulation. We find that the sharp longitudinal and transverse depinning transitions with hysteresis still persist in the presence of weak disorder. However, the transitions are smeared out in the strong disorder limit. The theoretical results here provide a natural explanation for the recent data for the depinning transition of Kr films on gold substrate.Comment: 8 pages, 8 figs, to appear in Phys. Rev.

    Current-voltage scaling of a Josephson-junction array at irrational frustration

    Full text link
    Numerical simulations of the current-voltage characteristics of an ordered two-dimensional Josephson junction array at an irrational flux quantum per plaquette are presented. The results are consistent with an scaling analysis which assumes a zero temperature vortex glass transition. The thermal correlation length exponent characterizing this transition is found to be significantly different from the corresponding value for vortex-glass models in disordered two-dimensional superconductors. This leads to a current scale where nonlinearities appear in the current-voltage characteristics decreasing with temperature TT roughly as T2T^2 in contrast with the T3T^3 behavior expected for disordered models.Comment: RevTex 3.0, 12 pages with Latex figures, to appear in Phys. Rev. B 54, Rapid. Com

    Diluted Josephson-junction arrays in a magnetic field: phase coherence and vortex glass thresholds

    Get PDF
    The effects of random dilution of junctions on a two-dimensional Josephson-junction array in a magnetic field are considered. For rational values of the average flux quantum per plaquette ff, the superconducting transition temperature vanishes, for increasing dilution, at a critical value xS(f)x_S(f), while the vortex ordering remains stable up to xVL>xSx_{VL}>x_S, much below the value xpx_p corresponding to the geometric percolation threshold. For xVL<x<xp x_{VL}<x<x_p, the array behaves as a zero-temperature vortex-glass. Numerical results for f=1/2f=1/2 from defect energy calculations are presented which are consistent with this scenario.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes

    Get PDF
    We study the strain relaxation mechanisms of Cu on Pd(111) up to the monolayer regime using two different computational methodologies, basin-hopping global optimization and energy minimization with a repulsive bias potential. Our numerical results are consistent with experimentally observed layer-by-layer growth mode. However, we find that the structure of the Cu layer is not fully pseudomorphic even at low coverages. Instead, the Cu adsorbates forms fcc and hcp stacking domains, separated by partial misfit dislocations. We also estimate the minimum energy path and energy barriers for transitions from the ideal epitaxial state to the fcc-hcp domain pattern.Comment: 4 pages, 4 figure

    Phase Diagram and Commensurate-Incommensurate Transitions in the Phase Field Crystal Model with an External Pinning Potential

    Get PDF
    We study the phase diagram and the commensurate-incommensurate transitions in a phase field model of a two-dimensional crystal lattice in the presence of an external pinning potential. The model allows for both elastic and plastic deformations and provides a continuum description of lattice systems, such as for adsorbed atomic layers or two-dimensional vortex lattices. Analytically, a mode expansion analysis is used to determine the ground states and the commensurate-incommensurate transitions in the model as a function of the strength of the pinning potential and the lattice mismatch parameter. Numerical minimization of the corresponding free energy shows good agreement with the analytical predictions and provides details on the topological defects in the transition region. We find that for small mismatch the transition is of first-order, and it remains so for the largest values of mismatch studied here. Our results are consistent with results of simulations for atomistic models of adsorbed overlayers
    corecore