36 research outputs found

    Cells electric charge analyses define specific properties for cancer cells activity

    Get PDF
    The surface electrical charge of cells is conditioned by the ionic medium in which they are immersed. This charge is specific for each cell type and is especially important in tumour cells because it determines their state of aggregation and their adhesion in the different organs. This study analyses the variations in surface charge of cells when pH, electrolytes, and their concentration are modified. The modification of these factors leads to changes in the surface charge of tumour cells; therefore, their states of aggregation and behaviour can be modified. This may even have a use in the prognosis and treatment of various tumours. Some studies conclude that the activity associated with the glycolysis process is accompanied by a change in the surface charge of cells. Notably, there is a high rate of glycolysis in tumours. Our results show that surface charge of cells strongly depends on nature of ionic medium in which they are found, with the valence of the majority ion being the most important factor. When ionic strength was high, the charge decreased dramatically. On the other hand, charge becomes zero or positive in an acidic pH, while in a basic pH, the negative charge increases.University of Jaen CTS 44

    Heart Histopathology and Mitochondrial Ultrastructure in Aged Rats Fed for 24 Months on Different Unsaturated Fats (Virgin Olive Oil, Sunflower Oil or Fish Oil) and Affected by Different Longevity

    Get PDF
    Diet plays a decisive role in heart physiology, with lipids having especial importance in pathology prevention and development. This study aimed to investigate how dietary lipids varying in lipid profile (virgin olive oil, sunflower oil or fish oil) affected the heart of rats during aging. Heart histopathology, mitochondrial morphometry, and oxidative status were assessed. Typical histopathological features associated with aging, such as valvular lesions, endomyocardical hyperplasia, or papillary muscle calcification, were found at a low extent in all the experimental groups. The most relevant finding was that inflammation registered by fish oil group was lower compared to the other treatments. At the ultrastructural level, heart mitochondrial area, perimeter, and aspect ratio were higher in fish oil-fed rats than in those fed on sunflower oil. Concerning oxidative stress markers, there were differences only in coenzyme Q levels and catalase activity, lower in sunflower oil-fed animals compared with those fed on fish oil. In summary, dietary intake for a long period on dietary fats with different fatty acids profile led to differences in some aspects associated with the aging process at the heart. Fish oil seems to be the fat most protective of heart during aging.This research was supported by R + D grants from the Spanish Ministry of Education and Science [AGL2008-01057] and the Government of Andalusia [AGR832]

    Inhibition of iNOS as a Novel Effective Targeted Therapy Against Triple-Negative Breast Cancer

    Get PDF
    INTRODUCTION: Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with no effective targeted therapy. Inducible nitric oxide synthase (iNOS) is associated with poor survival in patients with breast cancer by increasing tumor aggressiveness. This work aimed to investigate the potential of iNOS inhibitors as a targeted therapy for TNBC. We hypothesized that inhibition of endogenous iNOS would decrease TNBC aggressiveness by reducing tumor initiation and metastasis through modulation of epithelial-mesenchymal transition (EMT)-inducing factors. METHODS: iNOS protein levels were determined in 83 human TNBC tissues and correlated with clinical outcome. Proliferation, mammosphere-forming efficiency, migration, and EMT transcription factors were assessed in vitro after iNOS inhibition. Endogenous iNOS targeting was evaluated as a potential therapy in TNBC mouse models. RESULTS: High endogenous iNOS expression was associated with worse prognosis in patients with TNBC by gene expression as well as immunohistochemical analysis. Selective iNOS (1400 W) and pan-NOS (L-NMMA and L-NAME) inhibitors diminished cell proliferation, cancer stem cell self-renewal, and cell migration in vitro, together with inhibition of EMT transcription factors (Snail, Slug, Twist1, and Zeb1). Impairment of hypoxia-inducible factor 1α, endoplasmic reticulum stress (IRE1α/XBP1), and the crosstalk between activating transcription factor 3/activating transcription factor 4 and transforming growth factor β was observed. iNOS inhibition significantly reduced tumor growth, the number of lung metastases, tumor initiation, and self-renewal. CONCLUSIONS: Considering the effectiveness of L-NMMA in decreasing tumor growth and enhancing survival rate in TNBC, we propose a targeted therapeutic clinical trial by re-purposing the pan-NOS inhibitor L-NMMA, which has been extensively investigated for cardiogenic shock as an anti-cancer therapeutic

    TGFβ Governs the Pleiotropic Activity of NDRG1 in Triple-Negative Breast Cancer Progression

    Get PDF
    In triple-negative breast cancer (TNBC), the pleiotropic NDRG1 (N-Myc downstream regulated gene 1) promotes progression and worse survival, yet contradictory results were documented, and the mechanisms remain unknown. Phosphorylation and localization could drive NDRG1 pleiotropy, nonetheless, their role in TNBC progression and clinical outcome was not investigated. We found enhanced p-NDRG1 (Thr346) by TGFβ1 and explored whether it drives NDRG1 pleiotropy and TNBC progression. In tissue microarrays of 81 TNBC patients, we identified that staining and localization of NDRG1 and p-NDRG1 (Thr346) are biomarkers and risk factors associated with shorter overall survival. We found that TGFβ1 leads NDRG1, downstream of GSK3β, and upstream of NF-κB, to differentially regulate migration, invasion, epithelial-mesenchymal transition, tumor initiation, and maintenance of different populations of cancer stem cells (CSCs), depending on the progression stage of tumor cells, and the combination of TGFβ and GSK3β inhibitors impaired CSCs. The present study revealed the striking importance to assess both total NDRG1 and p-NDRG1 (Thr346) positiveness and subcellular localization to evaluate patient prognosis and their stratification. NDRG1 pleiotropy is driven by TGFβ to differentially promote metastasis and/or maintenance of CSCs at different stages of tumor progression, which could be abrogated by the inhibition of TGFβ and GSK3β.Instituto de Salud Carlos III European Commission PI15/00336 PI19/01533 CP14/00197 CP19/00029 PIE16/00045Ministry of Science and Innovation, Spain (MICINN)Instituto de Salud Carlos IIISpanish Government RTI2018.101309B-C22Chair "Doctors Galera-Requena in cancer stem cell research" CMC-CTS963European Regional Development Fund (European Union)Ministerio de Universidades FPU19/04450Junta de Andalucia RH-0139-2020Sistema Nacional de Garantia Juvenil (Fondo Social Europeo) 8064Junta de Andalucia, Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades DOC_01686Fundacion Cientifica Asociacion Espanola Contra el Cancer, Junta Provincial de Jaen (AECC) PRDJA19001BLA

    EZH2 endorses cell plasticity to non-small cell lung cancer cells facilitating mesenchymal to epithelial transition and tumour colonization

    Get PDF
    CGL was funded by the Consejería de Salud y Familias, Junta de Andalucía (RH-0139-2020) and SG-P is funded by Instituto de Salud Carlos III (CP19/00029, PI15/00336, PI19/01533). JAM is supported by RTI2018.101309B-C22 funded by MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa” and by the Chair “Doctors Galera-Requena in cancer stem cell research”. PCS is funded by Ministerio de Ciencia e Innovación (grant PID2020-119032RB-I00) and FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (grants P20_00335 and B‐CTS‐40‐UGR20). The Landeira lab is supported by the Spanish ministry of science and innovation (PID2019-108108-100, EUR2021-122005), the Andalusian regional government (PC-0246-2017, PIER-0211-2019, PY20_00681) and the University of Granada (A-BIO-6-UGR20) grants.Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial–mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.Junta de Andalucía (RH-0139-2020)Instituto de Salud Carlos III (CP19/00029, PI15/00336, PI19/01533)MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa” RTI2018.101309B-C22Chair “Doctors Galera-Requena in cancer stem cell research”Ministerio de Ciencia e Innovación (grant PID2020-119032RB-I00)FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (grants P20_00335 and B‐CTS‐40‐UGR20)Spanish ministry of science and innovation (PID2019-108108-100, EUR2021-122005)Andalusian regional government (PC-0246-2017, PIER-0211-2019, PY20_00681)University of Granada (A-BIO-6-UGR20

    Activating Transcription Factor 4 Modulates TGFβ-Induced Aggressiveness in Triple-Negative Breast Cancer via SMAD2/3/4 and mTORC2 Signaling

    Get PDF
    Purpose: On the basis of the identified stress-independent cellular functions of activating transcription factor 4 (ATF4), we reported enhanced ATF4 levels in MCF10A cells treated with TGFβ1. ATF4 is overexpressed in patients with triple-negative breast cancer (TNBC), but its impact on patient survival and the underlying mechanisms remain unknown. We aimed to determine ATF4 effects on patients with breast cancer survival and TNBC aggressiveness, and the relationships between TGFβ and ATF4. Defining the signaling pathways may help us identify a cell signaling-tailored gene signature.Experimental Design: Patient survival data were determined by Kaplan-Meier analysis. Relationship between TGFβ and ATF4, their effects on aggressiveness (tumor proliferation, metastasis, and stemness), and the underlying pathways were analyzed in three TNBC cell lines and in vivo using patient-derived xenografts (PDX).Results: ATF4 overexpression correlated with TNBC patient survival decrease and a SMAD-dependent crosstalk between ATF4 and TGFβ was identified. ATF4 expression inhibition reduced migration, invasiveness, mammosphere-forming efficiency, proliferation, epithelial-mesenchymal transition, and antiapoptotic and stemness marker levels. In PDX models, ATF4 silencing decreased metastases, tumor growth, and relapse after chemotherapy. ATF4 was shown to be active downstream of SMAD2/3/4 and mTORC2, regulating TGFβ/SMAD and mTOR/RAC1-RHOA pathways independently of stress. We defined an eight-gene signature with prognostic potential, altered in 45% of 2,509 patients with breast cancer.Conclusions: ATF4 may represent a valuable prognostic biomarker and therapeutic target in patients with TNBC, and we identified a cell signaling pathway-based gene signature that may contribute to the development of combinatorial targeted therapies for breast cancer

    Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alvolar bone resorption by mitochondrial-related mechanisms

    Get PDF
    Background/Objectives: Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats.Methods/Findings: Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations.Conclusions: The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.This study was supported by I+D grants from the Spanish Ministry of Education and Science (AGL2008-01057) and the Autonomous Government of Andalusia (AGR832)
    corecore