120 research outputs found

    Single ion implantation for single donor devices using Geiger mode detectors

    Full text link
    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Improving single ion detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 um from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of <2.5 nm. Significant reduction in false count probability is achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as 1E-1 and 1E-4 for operation temperatures of 300K and 77K, respectively. Low temperature operation and reduced false, dark, counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 1E-4 at an average ion number per gated window of 0.015.Comment: 10 pages, 5 figures, submitted to Nanotechnolog

    Inelastic X-ray Scattering by Electronic Excitations in Solids at High Pressure

    Get PDF
    Investigating electronic structure and excitations under extreme conditions gives access to a rich variety of phenomena. High pressure typically induces behavior such as magnetic collapse and the insulator-metal transition in 3d transition metals compounds, valence fluctuations or Kondo-like characteristics in ff-electron systems, and coordination and bonding changes in molecular solids and glasses. This article reviews research concerning electronic excitations in materials under extreme conditions using inelastic x-ray scattering (IXS). IXS is a spectroscopic probe of choice for this study because of its chemical and orbital selectivity and the richness of information it provides. Being an all-photon technique, IXS has a penetration depth compatible with high pressure requirements. Electronic transitions under pressure in 3d transition metals compounds and ff-electron systems, most of them strongly correlated, are reviewed. Implications for geophysics are mentioned. Since the incident X-ray energy can easily be tuned to absorption edges, resonant IXS, often employed, is discussed at length. Finally studies involving local structure changes and electronic transitions under pressure in materials containing light elements are briefly reviewed.Comment: submitted to Rev. Mod. Phy

    Experimental and theoretical evidence for pressure-induced metallization in FeO with the rock-salt type structure

    Full text link
    Electrical conductivity of FeO was measured up to 141 GPa and 2480 K in a laserheated diamond-anvil cell. The results show that rock-salt (B1) type structured FeO metallizes at around 70 GPa and 1900 K without any structural phase transition. We computed fully self-consistently the electronic structure and the electrical conductivity of B1 FeO as a function of pressure and temperature, and found that although insulating as expected at ambient condition, B1 FeO metallizes at high temperatures, consistent with experiments. The observed metallization is related to spin crossover

    Premature Osteoblast Clustering by Enamel Matrix Proteins Induces Osteoblast Differentiation through Up-Regulation of Connexin 43 and N-Cadherin

    Get PDF
    In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo

    Partitioning of the water soluble versus insoluble fraction of trace elements in the city of Santiago, Chile

    Get PDF
    Se investigó la composición elemental total y la fracción soluble en agua de PM en tres áreas urbanas diferentes de Santiago de Chile, del centro a los suburbios. Las muestras de PM recogidas durante el mes de mayo (mediados del otoño en el hemisferio sur) en 2006, 2008, 2009 y 2010 fueron analizadas para metales mayores y trazas, y la partición entre fracciones insolubles y solubles se determinó para la mayoría de ellos. Las concentraciones medias de PM variaron de 71 μg m (Cerrillos) a 128 μg m (La Pintana), valores que se encuentran dentro de los rangos estacionales observados en Santiago. Se cuantificaron 25 elementos principales y trazas (Fe, Al, Ca, K, Mg, P, Pb, S, Ti, Mn, Cu, Zn, Ba, Zr, Cr, As, Sn, Sb, Ni, V, Li Co, Cd, La y Rb) en el presente estudio. Ba, Sb, Cd, As y Zn fueron los elementos más solubles, con proporciones que varían de 50% a 98% de solubilidad. Por el contrario, los oligoelementos menos solubles fueron Ti, Sn, Pb y Cr. La mayor parte de los metales traza de alta solubilidad no están solamente fuertemente ligados a la emisión de tubos de escape vehiculares, sino a emisiones vehiculares como el sistema de frenos o a ciertas fuentes industriales. Nuestros resultados evidencian la cantidad significativa de oligoelementos solubles en la atmósfera urbana de Santiago clasificados como tóxicos y/o carcinógenos, lo que sugiere un impacto no despreciable en la salud.The total elemental composition and the water-soluble fraction of PM from three different urban areas in Santiago, Chile, from downtown to the suburbs, were investigated. PM samples collected during the month of May (mid-autumn in the Southern Hemisphere) in 2006, 2008, 2009, and 2010 were analyzed for major and trace metals, and the partitioning between the insoluble and soluble fractions was determined for most of them. PM average concentrations ranged from 71 μg m (Cerrillos) to 128 μg m (La Pintana), which are within the seasonal ranges observed in Santiago. Twenty five major and trace elements (Fe, Al, Ca, K, Mg, P, Pb, S, Ti, Mn, Cu, Zn, Ba, Zr, Cr, As, Sn, Sb, Ni, V, Li, Co, Cd, La, and Rb) were determined in the present study. Ba, Sb, Cd, As, and Zn, with proportions in the soluble fraction varying from 50% to 98%, were the most soluble elements. On the contrary, the less soluble trace elements were Ti, Sn, Pb, and Cr. Most of the high-solubility trace metals are strongly linked to non-exhaust traffic emissions, as well as to certain industrial sources. Our results evidence the significant amount of soluble trace elements in Santiago's urban atmosphere classified as toxic and/or carcinogenic, thus suggesting a non-negligible health impact
    • …
    corecore