43 research outputs found
Gauge-invariant description of several (2+1)-dimensional integrable nonlinear evolution equations
We obtain new gauge-invariant forms of two-dimensional integrable systems of
nonlinear equations: the Sawada-Kotera and Kaup-Kuperschmidt system, the
generalized system of dispersive long waves, and the Nizhnik-Veselov-Novikov
system. We show how these forms imply both new and well-known two-dimensional
integrable nonlinear equations: the Sawada-Kotera equation, Kaup-Kuperschmidt
equation, dispersive long-wave system, Nizhnik-Veselov-Novikov equation, and
modified Nizhnik-Veselov-Novikov equation. We consider Miura-type
transformations between nonlinear equations in different gauges.Comment: Talk given at the Workshop "Nonlinear Physics: Theory and Experiment.
V", Gallipoli (Lecce, Italy), 12-21 June, 200
Gauge-invariant description of some (2+1)-dimensional integrable nonlinear evolution equations
New manifestly gauge-invariant forms of two-dimensional generalized
dispersive long-wave and Nizhnik-Veselov-Novikov systems of integrable
nonlinear equations are presented. It is shown how in different gauges from
such forms famous two-dimensional generalization of dispersive long-wave system
of equations, Nizhnik-Veselov-Novikov and modified Nizhnik-Veselov-Novikov
equations and other known and new integrable nonlinear equations arise.
Miura-type transformations between nonlinear equations in different gauges are
considered.Comment: 13 pages, LaTeX, no figure
[Carte de la Mer Egée et de la Mer de Marmara] / Io Alvise Gramolin ; Da Venetia feci lano 1624
Ancien possesseur : Santarém, Manuel Francisco de Barros e Sousa de Mesquita de Macedo Leitão e Carvalhosa (1791-1856 ; vicomte de). Ancien possesseurAncien possesseur : Miller, Veuve d'Emmanuel (18..-18..?). Ancien possesseurAppartient à l’ensemble documentaire : PortulF