1,074 research outputs found
Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy.
Background: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disorder characterized by
unexplained left ventricle hypertrophy associated with non-dilated ventricular chambers. Several genes
encoding heart sarcomeric proteins have been associated to HCM, but a small proportion of HCM patients
harbor alterations in other non-sarcomeric loci. The variable expression of HCM seems influenced by genetic
modifier factors and new sequencing technologies are redefining the understanding of genotype–phenotype
relationships, even if the interpretations of the numerous identified variants pose several challenges.
Methods and results: We investigated 62 sarcomeric and non-sarcomeric genes in 41 HCM cases and in
3 HCM-related disorders patients. We employed an integrated approach that combines multiple tools for
the prediction, annotation and visualization of functional variants. Genotype–phenotype correlations
were carried out for inspecting the involvement of each gene in age onset and clinical variability of HCM. The
80% of the non-syndromic patients showed at least one rare non-synonymous variant (nsSNV) and among
them, 58% carried alterations in sarcomeric loci, 14% in desmosomal and 7% in other non-sarcomeric ones
without any sarcomere change. Statistical analyses revealed an inverse correlation between the number of
nsSNVs and age at onset, and a relationship between the clinical variability and number and type of variants.
Conclusions: Our results extend the mutational spectrum of HCM and contribute in defining the molecular
pathogenesis and inheritance pattern(s) of this condition. Besides, we delineate a specific procedure for the
identification of the most likely pathogenetic variants for a next generation sequencing approach embodied in
a clinical context
Detection of influenza A(H1N1)pdm09 virus in a patient travelling from Shanghai to Italy in July 2018: An uncommon clinical presentation in a non-seasonal period
Influenza is one of the most common infectious diseases in travellers, especially in those returning from subtropical and tropical regions. In late June 2018 an influenza A(H1N1)pdm09 virus infection was diagnosed in a 36-years-old man, returned from a travel in Shanghai and hospitalized at the Ospedale Policlinico San Martino, Genoa, Italy, with a diagnosis of fever and an uncommon clinical presentation characterised by a persistent leukopenia. Phylogenetic analysis revealed a closeness with influenza A(H1N1)pdm09 strains circulating in the US in May-June 2018. Prompt recognition of influenza infection led to a proper case management, demonstrating the crucial role of the continuous influenza surveillance programme
Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: clinical, prognostic and therapeutic implications.
BCR/ABL1-like acute lymphoblastic leukaemia (ALL) is a subgroup of B-lineage acute lymphoblastic leukaemia that occurs within cases without recurrent molecular rearrangements. Gene expression profiling (GEP) can identify these cases but it is expensive and not widely available. Using GEP, we identified 10 genes specifically overexpressed by BCR/ABL1-like ALL cases and used their expression values - assessed by quantitative real time-polymerase chain reaction (Q-RT-PCR) in 26 BCR/ABL1-like and 26 non-BCR/ABL1-like cases to build a statistical "BCR/ABL1-like predictor", for the identification of BCR/ABL1-like cases. By screening 142 B-lineage ALL patients with the "BCR/ABL1-like predictor", we identified 28/142 BCR/ABL1-like patients (19·7%). Overall, BCR/ABL1-like cases were enriched in JAK/STAT mutations (P < 0·001), IKZF1 deletions (P < 0·001) and rearrangements involving cytokine receptors and tyrosine kinases (P = 0·001), thus corroborating the validity of the prediction. Clinically, the BCR/ABL1-like cases identified by the BCR/ABL1-like predictor achieved a lower rate of complete remission (P = 0·014) and a worse event-free survival (P = 0·0009) compared to non-BCR/ABL1-like ALL. Consistently, primary cells from BCR/ABL1-like cases responded in vitro to ponatinib. We propose a simple tool based on Q-RT-PCR and a statistical model that is capable of easily, quickly and reliably identifying BCR/ABL1-like ALL cases at diagnosis
Identification of a variant hotspot in MYBPC3 and of a novel CSRP3 autosomal recessive alteration in a cohort of Polish patients with hypertrophic cardiomyopathy
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a heart disorder caused by autosomal dominant alterations affecting both sarcomeric genes and other nonsarcomeric loci in a minority of cases. However, in some patients, the occurrence of the causal pathogenic variant or variants in homozygosity, compound heterozygosity, or double heterozygosity has also been described. Most of the HCM pathogenic variants are missense and unique, but truncating mutations of the MYBPC3 gene have been reported as founder pathogenic variants in populations from Finland, France, Japan, Iceland, Italy, and the Netherlands. OBJECTIVES This study aimed to assess the genetic background of HCM in a cohort of Polish patients. PATIENTS AND METHODS Twenty–nine Polish patients were analyzed by a next–generation sequencing panel including 404 cardiovascular genes. RESULTS Pathogenic variants were found in 41% of the patients, with ultra–rare MYBPC3 c.2541C>G (p.Tyr847Ter) mutation standing for a variant hotspot and correlating with a lower age at HCM diagnosis. Among the nonsarcomeric genes, the CSRP3 mutation was found in a single case carrying the novel c.364C>T (p.Arg122Ter) variant in homozygosity. With this finding, the total number of known HCM cases with human CSRP3 knockout cases has reached 3
Comprehensive analysis of mitochondrial and nuclear DNA variations in patients affected by hemoglobinopathies: a pilot study
The hemoglobin disorders are the most common single gene disorders in the world. Previous studies have suggested that they are deeply geographically structured and a variety of genetic determinants influences different clinical phenotypes between patients inheriting identical β-globin gene mutations. In order to get new insights into the heterogeneity of hemoglobin disorders, we investigated the molecular variations on nuclear genes (i.e. HBB, HBG2, BCL11A, HBS1L and MYB) and mitochondrial DNA control region. This pilot study was carried out on 53 patients belonging to different continents and molecularly classified in 4 subgroup: β-thalassemia (β+/β+, β0/β0 and β+/β0)(15), sickle cell disease (HbS/HbS)(20), sickle cell/β-thalassemia (HbS/β+ or HBS/β0)(10), and non-thalassemic compound heterozygous (HbS/HbC, HbO-Arab/HbC)(8). This comprehensive phylogenetic analysis provided a clear separation between African and European patients either in nuclear or mitochondrial variations. Notably, informing on the phylogeographic structure of affected individuals, this accurate genetic stratification, could help to optimize the diagnostic algorithm for patients with uncertain or unknown origin
Human RSPO1/R-spondin1 Is Expressed during Early Ovary Development and Augments beta-Catenin Signaling
Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/beta-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6-9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding beta catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced beta-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wildtype RSPO1 cDNA resulted in weak dose-dependent activation of a beta-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding beta-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of beta-catenin signaling to oppose testis determination
Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology
Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes
Phase 1/2 study of weekly carfilzomib, cyclophosphamide, dexamethasone in newly diagnosed transplant-ineligible myeloma
This multicentre, open-label phase 1/2 trial determined safety and efficacy of weekly carfilzomib plus cyclophosphamide-dexamethasone (wKCyd) in newly diagnosed multiple myeloma (NDMM) patients aged ≥65 years or transplant ineligible. Patients received wKCyd for up to nine 28-day cycles, followed by maintenance with carfilzomib until progression/intolerance. The phase 1 portion used a 3+3 dose-escalation scheme to determine the maximum tolerated dose of weekly carfilzomib: 12 patients received wKCyd with carfilzomib doses of 45, 56 and 70 mg/m 2. The recommended phase 2 dose was established at 70 mg/m 2 and 54 patients (phase 1 and 2) received weekly carfilzomib 70 mg/m 2: 85% of them achieved ≥partial response (PR), 66% ≥very good PR, 30%≥near-complete response (CR) and 15% CR. Responses improved in 40 patients who started maintenance: 98% achieved ≥PR, including 29% CR and 10% stringent CR. After a median follow-up of 18 months, the 2-year progression-free survival and overall survival rates were 53.2% and 81%, respectively. The most frequent grade 3-5 toxicities were neutropenia (22%) and cardiopulmonary adverse events (9%). This is the first study of weekly carfilzomib plus an alkylating agent in elderly patients with NDMM. wKCyd was effective, with an acceptable risk/benefit ratio, and thus can be a valid option in this setting
- …