499 research outputs found

    Modal analysis of wave propagation in dispersive media

    Full text link
    Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914)] by the presence of branches in the integral expression of the wave function. In this article, a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.Comment: 10 pages, 9 figure

    Calculation and analysis of complex band structure in dispersive and dissipative two-dimensional photonic crystals

    Full text link
    Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.Comment: to be submitted for publicatio

    Finite Element Analysis of Electromagnetic Waves in Two-Dimensional Transformed Bianisotropic Media

    Full text link
    We analyse wave propagation in two-dimensional bianisotropic media with the Finite Element Method (FEM). We start from the Maxwell-Tellegen's equations in bianisotropic media, and derive some system of coupled Partial Difference Equations (PDEs) for longitudinal electric and magnetic field components. Perfectly Matched Layers (PMLs) are discussed to model such unbounded media. We implement these PDEs and PMLs in a finite element software. We apply transformation optics in order to design some bianisotropic media with interesting functionalities, such as cloaks, concentrators and rotators. We propose a design of metamaterial with concentric layers made of homogeneous media with isotropic permittivity, permeability and magneto-electric parameters that mimic the required effective anisotropic tensors of a bianisotropic cloak in the long wavelength limit (homogenization approach). Our numerical results show that well-known metamaterials can be transposed to bianisotropic media.Comment: 26 pages, 8 figure

    Phase retrieval of reflection and transmission coefficients from Kramers-Kronig relations

    Full text link
    Analytic and passivity properties of reflection and transmission coefficients of thin-film multilayered stacks are investigated. Using a rigorous formalism based on the inverse Helmholtz operator, properties associated to causality principle and passivity are established when both temporal frequency and spatial wavevector are continued in the complex plane. This result extends the range of situations where the Kramers-Kronig relations can be used to deduce the phase from the intensity. In particular, it is rigorously shown that Kramers-Kronig relations for reflection and transmission coefficients remain valid at a fixed angle of incidence. Possibilities to exploit the new relationships are discussed.Comment: submitted for publicatio

    Exact Modal Methods

    No full text
    International audienceA rigorous formulation of the Exact Modal Method for lamellar structures is presented. A special attention is paid to the continuation of the electromagnetic field inside a lamellar layer that provides a large class of solutions of Maxwell's equations in presence of lamellar gratings. Next, it is shown that in each lamellar layer, there is a decoupling of the vector field equations into two independent scalar equations, which correspond to those of a multilayered stack. The techniques used for the calculation of the exact modes and eigenvalues are presented in detail. Finally, a numerical illustration shows the efficiency of the method

    Quasi-TEM modes in rectangular waveguides: a study based on the properties of PMC and hard surfaces

    Full text link
    Hard surfaces or magnetic surfaces can be used to propagate quasi-TEM modes inside closed waveguides. The interesting feature of these modes is an almost uniform field distribution inside the waveguide. But the mechanisms governing how these surfaces act, how they can be characterized, and further how the modes propagate are not detailed in the literature. In this paper, we try to answer these questions. We give some basic rules that govern the propagation of the quasi-TEM modes, and show that many of their characteristics (i.e. their dispersion curves) can be deduced from the simple analysis of the reflection properties of the involved surfaces
    • …
    corecore