38,999 research outputs found
Experimental evidence for radiative attachment in astrochemistry from electron attachment to NCCCCN
Electron attachment to NCCCCN, dicyanoacetylene (2-butynedinitrile), has been observed. Metastable parent anions, NCCCCN_∗, with microsecond or longer lifetimes are formed close to 0 eV electron energy with a cross section of ≥0.25 2. The stability of NCCCCN suggests that radiative attachment to NCCCCN and similar _∗ °A linear carbon chain molecules may be an important mechanism for the formation of negatively charged molecular ions in astrophysical environments. CCCN_ and CN_ fragment anions are formed at ∼3 and ∼6 eV
Segregation by membrane rigidity in flowing binary suspensions of elastic capsules
Spatial segregation in the wall normal direction is investigated in
suspensions containing a binary mixture of Neo-Hookean capsules subjected to
pressure driven flow in a planar slit. The two components of the binary mixture
have unequal membrane rigidities. The problem is studied numerically using an
accelerated implementation of the boundary integral method. The effect of a
variety of parameters was investigated, including the capillary number,
rigidity ratio between the two species, volume fraction, confinement ratio, and
the number fraction of the more floppy particle in the mixture. It was
observed that in suspensions of pure species, the mean wall normal positions of
the stiff and the floppy particles are comparable. In mixtures, however, the
stiff particles were found to be increasingly displaced towards the walls with
increasing , while the floppy particles were found to increasingly
accumulate near the centerline with decreasing . The origins of this
segregation is traced to the effect of the number fraction on the
localization of the stiff and the floppy particles in the near wall region --
the probability of escape of a stiff particle from the near wall region to the
interior is greatly reduced with increasing , while the exact opposite
trend is observed for a floppy particle with decreasing . Simple model
studies on heterogeneous pair collisions involving a stiff and a floppy
particle mechanistically explain this observation. The key result in these
studies is that the stiff particle experiences much larger cross-stream
displacement in heterogeneous collisions than the floppy particle. A unified
mechanism incorporating the wall-induced migration of deformable particles and
the particle fluxes associated with heterogeneous and homogeneous pair
collisions is presented.Comment: 19 Pages, 16 Figure
Defect flows in minimal models
In this paper we study a simple example of a two-parameter space of
renormalisation group flows of defects in Virasoro minimal models. We use a
combination of exact results, perturbation theory and the truncated conformal
space approach to search for fixed points and investigate their nature. For the
Ising model, we confirm the recent results of Fendley et al. In the case of
central charge close to one, we find six fixed points, five of which we can
identify in terms of known defects and one of which we conjecture is a new
non-trivial conformal defect. We also include several new results on exact
properties of perturbed defects and on the renormalisation group in the
truncated conformal space approach.Comment: 35 pages, 21 figures. 1 reference adde
Energy-level pinning and the 0.7 spin state in one dimension: GaAs quantum wires studied using finite-bias spectroscopy
We study the effects of electron-electron interactions on the energy levels
of GaAs quantum wires (QWs) using finite-bias spectroscopy. We probe the energy
spectrum at zero magnetic field, and at crossings of opposite-spin-levels in
high in-plane magnetic field B. Our results constitute direct evidence that
spin-up (higher energy) levels pin to the chemical potential as they populate.
We also show that spin-up and spin-down levels abruptly rearrange at the
crossing in a manner resembling the magnetic phase transitions predicted to
occur at crossings of Landau levels. This rearranging and pinning of subbands
provides a phenomenological explanation for the 0.7 structure, a
one-dimensional (1D) nanomagnetic state, and its high-B variants.Comment: 6 pages, 4 figure
Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator
Recent experiments on quantum behavior in microfabricated solid-state systems
suggest tantalizing connections to quantum optics. Several of these experiments
address the prototypical problem of cavity quantum electrodynamics: a two-level
system coupled to a quantum harmonic oscillator. Such devices may allow the
exploration of parameter regimes outside the near-resonance and weak-coupling
assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating
other theoretical approaches. One such approach is an adiabatic approximation
in the limit that the oscillator frequency is much larger than the
characteristic frequency of the two-level system. A derivation of the
approximation is presented and the time evolution of the two-level-system
occupation probability is calculated using both thermal- and coherent-state
initial conditions for the oscillator. Closed-form evaluation of the time
evolution in the weak-coupling limit provides insight into the differences
between the thermal- and coherent-state models. Finally, potential experimental
observations in solid-state systems, particularly the Cooper-pair
box--nanomechanical resonator system, are discussed and found to be promising.Comment: 16 pages, 11 figures; revised abstract; some text revisions; added
two figures and combined others; added references. Submitted to Phys. Rev.
Minimax studies
Effect of nonzero initial conditions on selection of minimax controllers for large launch vehicles and extremal bounded amplitude bounded rate inputs to linear system
Guidelines for the management of the foot health problems associated with rheumatoid arthritis
Background. Rheumatoid arthritis (RA) as a chronic systemic disease, commonly affects the feet, impacting
negatively on patients' quality of life. Specialist podiatrists have a prime role to play in the assessment and
management of foot and ankle problems within this patient group. However, it has been identified that in many
areas there is no specialist podiatry service, with many patients being managed by non‐specialist podiatrists.
Therefore, the North West Clinical Effectiveness Group for the Foot in Rheumatic Diseases (NWCEG) identified
the need to develop ‘practitioner facing’ guidelines for the management of specific foot health problems associated
with RA.
Methods. Members of a guideline development group from the NWCEG each reviewed the evidence for specific
aspects of the assessment and management of foot problems. Where evidence was lacking, ‘expert opinion’ was
obtained from the members of the NWCEG and added as a consensus on current and best practice. An iterative
approach was employed, with the results being reviewed and revised by all members of the group and external
reviewers before the final guideline document was produced.
Results. The management of specific foot problems (callus, nail pathology, ulceration) and the use of specific
interventions (foot orthoses, footwear, patient education, steroid injection therapy) are detailed and standards in
relation to each are provided. A diagrammatic screening pathway is presented, with the aim of guiding nonspecialist
podiatrists through the complexity of assessing and managing those patients with problems requiring
input from a specialist podiatrist and other members of the rheumatology multidisciplinary team.
Conclusion. This pragmatic approach ensured that the guidelines were relevant and applicable to current practice
as ‘best practice’, based on the available evidence from the literature and consensus expert opinion. These
guidelines provide both specialist and non‐specialist podiatrists with the essential and ‘gold standard’ aspects of
managing people with RA‐related foot problems
- …