36,163 research outputs found

    Quantum stabilization of a hedgehog type of cosmic string

    Get PDF
    Within a slightly simplified version of the electroweak standard model we investigate the stabilization of cosmic strings by fermion quantum fluctuations. Previous studies of quantum energies considered variants of the Nielsen-Olesen profile embedded in the electroweak gauge group and showed that configurations are favored for which the Higgs vacuum expectation value drops near the string core and the gauge field is suppressed. This work found that the strongest binding was obtained from strings that differ significantly from Nielsen-Olesen configurations, deforming essentially only the Higgs field in order to generate a strong attraction without inducing large gradients. Extending this analysis, we consider the leading quantum correction to the energy per unit length of a hedgehog type string, which, in contrast to the Nielsen-Olesen configuration, contains a pseudoscalar field. To employ the spectral method we develop the scattering and bound state problems for fermions in the background of a hedgehog string. Explicit occupation of bound state levels leads to strings that carry the quantum numbers of the bound fermions. We discuss the parameter space for which stable, hedgehog type cosmic strings emerge and reflect on phenomenological consequences of these findings.Comment: 34 page

    Attractive Electromagnetic Casimir Stress on a Spherical Dielectric Shell

    Get PDF
    Based on calculations involving an idealized boundary condition, it has long been assumed that the stress on a spherical conducting shell is repulsive. We use the more realistic case of a Drude dielectric to show that the stress is attractive, matching the generic behavior of Casimir forces in electromagnetism. We trace the discrepancy between these two cases to interactions between the electromagnetic quantum fluctuations and the dielectric material.Comment: Five pages, one figure, pdflatex, matches version to be pusblished in Phys Lett

    Stable charged cosmic strings

    Full text link
    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electro--weak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple "trough" in the Higgs vev of radius ≈10−18 m\approx 10^{-18}\,\mathrm{m}. The vacuum remains stable in our model, because neutral strings are not energetically favored.Comment: 5 pages, 3 figures, version to be published in Phys. Rev. Let

    Spectral Methods for Coupled Channels with a Mass Gap

    Get PDF
    We develop a method to compute the vacuum polarization energy for coupled scalar fields with different masses scattering off a background potential in one space dimension. As an example we consider the vacuum polarization energy of a kink-like soliton built from two real scalar fields with different mass parameters.Comment: 14 pages, 5 figures, matches journal version, references added (surprisingly many

    Casimir Effects in Renormalizable Quantum Field Theories

    Get PDF
    We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.Comment: 27 pp., 11 EPS figures, LaTeX using ijmpa1.sty; email correspondence to R.L. Jaffe ; based on talks presented by the authors at the 5th workshop `QFTEX', Leipzig, September 200
    • …
    corecore