6,415 research outputs found

    Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments

    Get PDF
    Satellite observations reveal a greening of the globe over recent decades. The role in this greening of the "CO2 fertilization" effect-the enhancement of photosynthesis due to rising CO2 levels-is yet to be established. The direct CO2 effect on vegetatio

    The application of lagrangian vortex methods to the prediction of hydrodynamic damping of floating bodies

    Get PDF
    Lagrangian vortex methods of simulating the vortex shedding which occurs at the bilges and sharp edges of floating bodies under oscillatory flow conditions due to incident waves and motion of the body in response are presented. Local forces are taken from discrete vortex simulations of the flow around an isolated edge representing the bilge section of the hull. Both the classical, meshless, potential flow vortex method and a vortex-in-cell viscous simulation are used. The flow around the bilge of a typical long floating hull in beam waves is treated on a sectional basis and the isolated edge results are matched to the outer threedimensional wave potential flow provided by a standard surface panel method. The advantage of this matching procedure is that the more computationally expensive vortex flow simulation is limited to the local bilge section for which universal results may be computed whereas the large scale wave-hull interaction which extends out many hull- or wave-lengths from the body is solved by the less computationally intensive panel method. This procedure thus provides an efficient method replacing empirical vortex damping coefficients, as presently used, by a more rational method based on flow physics. Results for regular waves generating sinusoidal flows around right angle edges, edges fitted with flat plate bilge keels and rounded edges are presented and some comparisons made with measured data from laboratory wave tank tests and results of full Navier-Stokes simulations

    Discovery of an extended debris disk around the F2V star HD 15745

    Full text link
    Using the Advanced Camera for Surveys aboard the Hubble Space Telescope, we have discovered dust-scattered light from the debris disk surrounding the F2V star HD 15745. The circumstellar disk is detected between 2.0" and 7.5" radius, corresponding to 128 - 480 AU radius. The circumstellar disk morphology is asymmetric about the star, resembling a fan, and consistent with forward scattering grains in an optically thin disk with an inclination of ~67 degrees to our line of sight. The spectral energy distribution and scattered light morphology can be approximated with a model disk composed of silicate grains between 60 and 450 AU radius, with a total dust mass of 10E-7 M_sun (0.03 M_earth) representing a narrow grain size distribution (1 - 10 micron). Galactic space motions are similar to the Castor Moving Group with an age of ~10E+8 yr, although future work is required to determine the age of HD 15745 using other indicators.Comment: 7 pages, 4 figures, ApJ Letters, in pres

    First scattered light images of debris disks around HD 53143 and HD 139664

    Full text link
    We present the first scattered light images of debris disks around a K star (HD 53143) and an F star (HD 139664) using the coronagraphic mode of the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). With ages 0.3 - 1 Gyr, these are among the oldest optically detected debris disks. HD 53143, viewed ~45 degrees from edge-on, does not show radial variation in disk structure and has width >55 AU. HD 139664 is seen close to edge-on and has belt-like morphology with a dust peak 83 AU from the star and a distinct outer boundary at 109 AU. We discuss evidence for significant diversity in the radial architecture of debris disks that appears unconnected to stellar spectral type or age. HD 139664 and possibly the solar system belong in a category of narrow belts 20-30 AU wide. HD 53143 represents a class of wide disk architecture with characteristic width >50 AU.Comment: 7 pages, 3 figure

    A Ring of Warm Dust in the HD 32297 Debris Disk

    Full text link
    We report the detection of a ring of warm dust in the edge-on disk surrounding HD 32297 with the Gemini-N/MICHELLE mid-infrared imager. Our N'-band image shows elongated structure consistent with the orientation of the scattered-light disk. The Fnu(11.2 um) = 49.9+/-2.1 mJy flux is significantly above the 28.2+/-0.6 mJy photosphere. Subtraction of the stellar point spread function reveals a bilobed structure with peaks 0.5"-0.6" from the star. An analysis of the stellar component of the SED suggests a spectral type later than A0, in contrast to commonly cited literature values. We fit three-dimensional, single-size grain models of an optically thin dust ring to our image and the SED using a Markov chain Monte Carlo algorithm in a Bayesian framework. The best-fit effective grain sizes are submicron, suggesting the same dust population is responsible for the bulk of the scattered light. The inner boundary of the warm dust is located 0.5"-0.7" (~65 AU) from the star, which is approximately cospatial with the outer boundary of the scattered-light asymmetry inward of 0.5". The addition of a separate component of larger, cooler grains that provide a portion of the 60 um flux improves both the fidelity of the model fit and consistency with the slopes of the scattered-light brightness profiles. Previous indirect estimates of the stellar age (~30 Myr) indicate the dust is composed of debris. The peak vertical optical depths in our models (~0.3-1 x 1e-2) imply that grain-grain collisions likely play a significant role in dust dynamics and evolution. Submicron grains can survive radiation pressure blow-out if they are icy and porous. Similarly, the inferred warm temperatures (130-200 K) suggest that ice sublimation may play a role in truncating the inner disk.Comment: ApJ accepted, 8 pages, 4 figure

    Crossing the Brown Dwarf Desert Using Adaptive Optics: A Very Close L-Dwarf Companion to the Nearby Solar Analog HR 7672

    Get PDF
    We have found a very faint companion to the active solar analog HR 7672 (HD 190406; GJ 779; 15 Sge). Three epochs of high resolution imaging using adaptive optics (AO) at the Gemini-North and Keck II Telescopes demonstrate that HR 7672B is a common proper motion companion, with a separation of 0.79" (14 AU) and a 2.16 um flux ratio of 8.6 mags. Using follow-up K-band spectroscopy from Keck AO+NIRSPEC, we measure a spectral type of L4.5+/-1.5. This is the closest ultracool companion around a main sequence star found to date by direct imaging. We estimate the primary has an age of 1-3 Gyr. Assuming coevality, the companion is most likely substellar, with a mass of 55-78 Mjup based on theoretical models. The primary star shows a long-term radial velocity trend, and we combine the radial velocity data and AO imaging to set a firm (model-independent) lower limit of 48 Mjup. In contrast to the paucity of brown dwarf companions at <~4 AU around FGK dwarfs, HR 7672B implies that brown dwarf companions do exist at separations comparable to those of the giant planets in our own solar system. Its presence is at variance with scenarios where brown dwarfs form as ejected stellar embryos. Moreover, since HR 7672B is likely too massive to have formed in a circumstellar disk as planets are believed to, its discovery suggests that a diversity of physical processes act to populate the outer regions of exoplanetary systems.Comment: Astrophysical Journal, in pres

    Speckle Statistics in Adaptively Corrected Images

    Full text link
    (abridged) Imaging observations are generally affected by a fluctuating background of speckles, a particular problem when detecting faint stellar companions at small angular separations. Knowing the distribution of the speckle intensities at a given location in the image plane is important for understanding the noise limits of companion detection. The speckle noise limit in a long-exposure image is characterized by the intensity variance and the speckle lifetime. In this paper we address the former quantity through the distribution function of speckle intensity. Previous theoretical work has predicted a form for this distribution function at a single location in the image plane. We developed a fast readout mode to take short exposures of stellar images corrected by adaptive optics at the ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ=2.2\lambda=2.2 μ\mum). These observations temporally oversample and spatially Nyquist sample the observed speckle patterns. We show, for various locations in the image plane, the observed distribution of speckle intensities is consistent with the predicted form. Additionally, we demonstrate a method by which IcI_c and IsI_s can be mapped over the image plane. As the quantity IcI_c is proportional to the PSF of the telescope free of random atmospheric aberrations, this method can be used for PSF calibration and reconstruction.Comment: 7 pages, 4 figures, ApJ accepte

    Designer Reagents for Mass Spectrometry-Based Proteomics: Clickable Cross-Linkers for Elucidation of Protein Structures and Interactions

    Get PDF
    We present novel homobifunctional amine-reactive clickable cross-linkers (CXLs) for investigation of three-dimensional protein structures and protein–protein interactions (PPIs). CXLs afford consolidated advantages not previously available in a simple cross-linker, including (1) their small size and cationic nature at physiological pH, resulting in good water solubility and cell-permeability, (2) an alkyne group for bio-orthogonal conjugation to affinity tags via the click reaction for enrichment of cross-linked peptides, (3) a nucleophilic displacement reaction involving the 1,2,3-triazole ring formed in the click reaction, yielding a lock-mass reporter ion for only clicked peptides, and (4) higher charge states of cross-linked peptides in the gas-phase for augmented electron transfer dissociation (ETD) yields. Ubiquitin, a lysine-abundant protein, is used as a model system to demonstrate structural studies using CXLs. To validate the sensitivity of our approach, biotin-azide labeling and subsequent enrichment of cross-linked peptides are performed for cross-linked ubiquitin digests mixed with yeast cell lysates. Cross-linked peptides are detected and identified by collision induced dissociation (CID) and ETD with linear quadrupole ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) and LTQ-Orbitrap mass spectrometers. The application of CXLs to more complex systems (e.g., in vivo cross-linking) is illustrated by Western blot detection of Cul1 complexes including known binders, Cand1 and Skp2, in HEK 293 cells, confirming good water solubility and cell-permeability
    • …
    corecore