46,630 research outputs found

    Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption

    Get PDF
    In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation −Δu−(k2+iε)u=f-\Delta u - (k^2+ {\rm i} \varepsilon)u = f, with absorption parameter ε∈R\varepsilon \in \mathbb{R}. Multigrid approximations of this equation with ε≠0\varepsilon \not= 0 are commonly used as preconditioners for the pure Helmholtz case (ε=0\varepsilon = 0). However a rigorous theory for such (so-called "shifted Laplace") preconditioners, either for the pure Helmholtz equation, or even the absorptive equation (ε≠0\varepsilon \not=0), is still missing. We present a new theory for the absorptive equation that provides rates of convergence for (left- or right-) preconditioned GMRES, via estimates of the norm and field of values of the preconditioned matrix. This theory uses a kk- and ε\varepsilon-explicit coercivity result for the underlying sesquilinear form and shows, for example, that if ∣ε∣∼k2|\varepsilon|\sim k^2, then classical overlapping additive Schwarz will perform optimally for the absorptive problem, provided the subdomain and coarse mesh diameters are carefully chosen. Extensive numerical experiments are given that support the theoretical results. The theory for the absorptive case gives insight into how its domain decomposition approximations perform as preconditioners for the pure Helmholtz case ε=0\varepsilon = 0. At the end of the paper we propose a (scalable) multilevel preconditioner for the pure Helmholtz problem that has an empirical computation time complexity of about O(n4/3)\mathcal{O}(n^{4/3}) for solving finite element systems of size n=O(k3)n=\mathcal{O}(k^3), where we have chosen the mesh diameter h∼k−3/2h \sim k^{-3/2} to avoid the pollution effect. Experiments on problems with h∼k−1h\sim k^{-1}, i.e. a fixed number of grid points per wavelength, are also given

    Transition from Poissonian to GOE level statistics in a modified Artin's billiard

    Get PDF
    One wall of Artin's billiard on the Poincar\'e half plane is replaced by a one-parameter (cpc_p) family of nongeodetic walls. A brief description of the classical phase space of this system is given. In the quantum domain, the continuousand gradual transition from the Poisson like to GOE level statistics due to the small perturbations breaking the symmetry responsible for the 'arithmetic chaos' at cp=1c_p=1 is studied. Another GOE \rightrrow Poisson transition due to the mixed phase space for large perturbations is also investigated. A satisfactory description of the intermediate level statistics by the Brody distribution was found in boh cases. The study supports the existence of a scaling region around cp=1c_p=1. A finite size scaling relation for the Brody-parameter as a function of 1−cp1-c_p and the number of levels considered can be established

    Analysis of a Helmholtz preconditioning problem motivated by uncertainty quantification

    Get PDF
    This paper analyses the following question: let Aj\mathbf{A}_j, j=1,2,j=1,2, be the Galerkin matrices corresponding to finite-element discretisations of the exterior Dirichlet problem for the heterogeneous Helmholtz equations ∇⋅(Aj∇uj)+k2njuj=−f\nabla\cdot (A_j \nabla u_j) + k^2 n_j u_j= -f. How small must ∥A1−A2∥Lq\|A_1 -A_2\|_{L^q} and ∥n1−n2∥Lq\|{n_1} - {n_2}\|_{L^q} be (in terms of kk-dependence) for GMRES applied to either (A1)−1A2(\mathbf{A}_1)^{-1}\mathbf{A}_2 or A2(A1)−1\mathbf{A}_2(\mathbf{A}_1)^{-1} to converge in a kk-independent number of iterations for arbitrarily large kk? (In other words, for A1\mathbf{A}_1 to be a good left- or right-preconditioner for A2\mathbf{A}_2?). We prove results answering this question, give theoretical evidence for their sharpness, and give numerical experiments supporting the estimates. Our motivation for tackling this question comes from calculating quantities of interest for the Helmholtz equation with random coefficients AA and nn. Such a calculation may require the solution of many deterministic Helmholtz problems, each with different AA and nn, and the answer to the question above dictates to what extent a previously-calculated inverse of one of the Galerkin matrices can be used as a preconditioner for other Galerkin matrices

    Previously unpublished Odonata records from Sarawak, Borneo : part 2, Kubah National Park

    Get PDF
    Records of Odonata from Kubah National Park, near Kuching in west Sarawak, are presented. Eighty-five species are known from the national park. Notable records include Drepanosticta drusilla, Rhinocypha species cf spinifer, Bornagriolestes species, Anaciaeschna species and Macromidia genialis erratica

    Indirect Signals from Dark Matter in Split Supersymmetry

    Full text link
    We study the possibilities for the indirect detection of dark matter in Split Supersymmetry from gamma-rays, positrons, and antiprotons. The most promising signal is the gamma-ray line, which may be observable at the next generation of detectors. For certain halo profiles and a high mass neutralino, the line can even be visible in current experiments. The continuous gamma-ray signal may be observable, if there is a central spike in the galactic halo density. The signals are found to be similar to those in MSSM models. These indirect signals complement other experiments, being most easily observable for regions of parameter space, such as heavy wino and higgsino dominated neutralinos, which are least accessible for direct detection and accelerator searches.Comment: 10 pages, 5 figures; experimental sensitivities added to figure 2, revised version to appear in Phys. Rev.
    • …
    corecore