826 research outputs found

    The application of multi-objective robust design methods in ship design

    Get PDF
    When designing large complex vessels, the evaluation of a particular design can be both complicated and time consuming. Designers often resort to the use of concept design models enabling both a reduction in complexity and time for evaluation. Various optimisation methods are then typically used to explore the design space facilitating the selection of optimum or near optimum designs. It is now possible to incorporate considerations of seakeeping, stability and costs at the earliest stage in the ship design process. However, to ensure that reliable results are obtained, the models used are generally complex and computationally expensive. Methods have been developed which avoid the necessity to carry out an exhaustive search of the complete design space. One such method is described which is concerned with the application of the theory of Design Of Experiments (DOE) enabling the design space to be efficiently explored. The objective of the DOE stage is to produce response surfaces which can then be used by an optimisation module to search the design space. It is assumed that the concept exploration tool whilst being a simplification of the design problem, is still sufficiently complicated to enable reliable evaluations of a particular design concept. The response surface is used as a representation of the concept exploration tool, and by it's nature can be used to rapidly evaluate a design concept hence reducing concept exploration time. While the methodology has a wide applicability in ship design and production, it is illustrated by its application to the design of a catamaran with respect to seakeeping. The paper presents results exploring the design space for the catamaran. A concept is selected which is robust with respect to the Relative Bow Motion (RBM), the heave, pitch and roll at any particular waveheading. The design space is defined by six controllable design parameters; hull length, breadth to draught ratio, distance between demihull centres, coefficient of waterplane, longitudinal centre of floatation, longitudinal centre of buoyancy, and by one noise parameter, the waveheading. A Pareto-optimal set of solutions is obtained using RBM, heave, pitch and roll as criteria. The designer can then select from this set the design which most closely satisfies their requirements. Typical solutions are shown to yield average reductions of over 25% in the objective functions when compared to earlier results obtained using conventional optimisation methods

    Multi-objective robust concept exploration within the made-to-order sector

    Get PDF
    Concept exploration is an activity of fundamental importance when designing large, complex made-to-order engineering products. At the concept design stage of the design process, it is essential that many design alternatives are evaluated. In the case of large made-to-order products, the evaluation of a particular design can be both complicated and time consuming. Under these circumstances, designers often resort to the use of concept design models enabling both a reduction in complexity and time for evaluation. Stochastic optimisation methods are then typically used to explore the design space facilitating the selection of optimum or near optimum designs. These optimisation methods can however increase the concept exploration time considerably due to their often random search manner. The objective of this work is therefore to produce a generic framework that would enable a designer to efficiently explore the design space within the MTO domain facilitating the selection of robust designs

    A microtonal wind controller building on Yamaha’s technology to facilitate the performance of music based on the “19-EDO” scale

    Get PDF
    We describe a project in which several collaborators adapted an existing instrument to make it capable of playing expressively in music based on the microtonal scale characterised by equal divsion of the octave into 19 tones (“19-EDO”). Our objective was not just to build this instrument, however, but also to produce a well-formed piece of music which would exploit it idiomatically, in a performance which would provide listeners with a pleasurable and satisfying musical experience. Hence, consideration of the extent and limits of the playing-techniques of the resulting instrument (a “Wind-Controller”) and of appropriate approaches to the composition of music for it were an integral part of the project from the start. Moreover, the intention was also that the piece, though grounded in the musical characteristics of the 19-EDO scale, would nevertheless have a recognisable relationship with what Dimitri Tymoczko (2010) has called the “Extended Common Practice” of the last millennium. So the article goes on to consider these matters, and to present a score of the resulting new piece, annotated with comments documenting some of the performance issues which it raises. Thus, bringing the project to fruition involved elements of composition, performance, engineering and computing, and the article describes how such an inter-disciplinary, multi-disciplinary and cross-disciplinary collaboration was co-ordinated in a unified manner to achieve the envisaged outcome. Finally, we consider why the building of microtonal instruments is such a problematic issue in a contemporary (“high-tech”) society like ours

    Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs

    Operational design co-ordination : an agent based approach

    Get PDF
    Operational design co-ordination has been identified as the basis for an approach to engineering design management that is more comprehensive than those that currently exist. As such, an integrated and holistic approach to operational design co-ordination has been developed that enables design to be managed in a coherent, appropriate and timely manner. Furthermore, the approach has been implemented within an agent-based software system, called the Design Co-ordination System, which has been applied to an industrial case study involving the computational design analysis of turbine blades. This application demonstrates that managing and adjusting in real-time in an operationally co-ordinated manner enables reductions in the time taken to complete the turbine blade design process to be achieved

    A multi-agent based system to enable strategic and operational design coordination

    Get PDF
    This paper presents two systems which individually focus on different aspects of design coordination, namely strategic and operational. The systems were developed in parallel and individually contain related models that represent specific frames from a Design Coordination Framework developed by Andreasen et al. [1]. The focus of the strategic design management system is the management of design tasks, decisions, information, goals and rationale within the design process, whereas the focus of the operational design coordination system is the coordination of tasks and activities with respect to the near-optimal utilisation of available resources. A common interface exists which enables the two systems to be integrated and used as a single system with the aim of managing both strategicand operational design coordination. Hence, the objective of this work is to enable the design process to be conducted in a timely and appropriate manner

    Coordination approaches and systems - part II : an operational perspective

    Get PDF
    This is the second of two papers surveying research in coordination approaches and systems. This paper is concerned with operational coordination, which is aimed at coordinating activities such that the design process can be performed in a near optimal manner with respect to time, and the allocation and utilisation of resources. Aspects of coordination categorised as operational include resource management, scheduling and planning. The first of these two papers presents a review of coordination from a strategic perspective, which is concerned with the decision management aspects of coordination. Greater emphasis is now being placed on the significance of organising the design process as this affects time to market, product quality, cost, and consequently product success. The aim of this paper is to present a fundamental review of operational coordination approaches and systems. The 1990s has seen much progress being made towards a greater understanding and appreciation of coordination in various disciplines through the development of a wide range of approaches and systems. However, there remains a requirement to formally identify the key issues involved in coordination such that a widely accepted representation can be agreed upon. Consequently, research should continue to be supported in the exploration for a unified approach to coordination which will permit a broader and greater understanding of those aspects involved

    A system for co-ordinating concurrent engineering

    Get PDF
    Design of large made-to-order products invariably involves design activities which are increasingly being distributed globally in order to reduce costs, gain competitive advantage and utilise external expertise and resources. Designers specialise within their domain producing solutions to design problems using the tools and techniques with which they are familiar. They possess a relatively local perception of where their expertise and actions are consumed within the design process. This is further compounded when design activities are geographically distributed, resulting with the increased disassociation between an individual designer's activities and the overall design process. The tools and techniques used by designers rarely facilitate concurrency, producing solutions within a particular discipline without using or sharing information from other disciplines, and seldom considering stages within the product's life-cycle other than conceptual, embodiment or detail [1, 2]. Conventional management and maintenance of consistency throughout the product model can subsequently become difficult to achieve since there are many factors that need to be simultaneously considered whilst making achange to the product model

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Subselenean tunneler melting head design: A preliminary study

    Get PDF
    The placement of base facilities in subsurface tunnels created as a result of subsurface mining is described as an alternative to the establishing of a base on the lunar surface. Placement of the base facilities and operations in subselenean tunnels will allow personnel to live and work free from the problem of radiation and temperature variations. A conceptual design for a tunneling device applicable to such a lunar base application was performed to assess the feasibility of the concept. A tunneler was designed which would melt through the lunar material leaving behind glass lined tunnels for later development. The tunneler uses a nuclear generator which supplies the energy to thermally melt the regolith about the cone shaped head. Melted regolith is exacavated through intakes in the head and transferred to a truck which hauls it to the surface. The tunnel walls are solidified to provide support lining by using an active cooling system about the mid section of the tunneler. Also addressed is the rationale for a subselenean tunneler and the tunneler configuration and subsystems, as well as the reasoning behind the resulting design
    • …
    corecore