3,187 research outputs found

    MACHOs, White Dwarfs, and the Age of the Universe

    Full text link
    (Abridged Abstract) A favored interpretation of recent microlensing measurements towards the Large Magellanic Cloud implies that a large fraction (i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We compare model white dwarf luminosity functions to the data from the observational surveys in order to determine a lower bound on the age of any substantial white dwarf halo population (and hence possibly on the age of the Universe). We compare various theoretical white dwarf luminosity functions, in which we vary hese three parameters, with the abovementioned survey results. From this comparison, we conclude that if white dwarfs do indeed constitute more than 10% of the local halo mass density, then the Universe must be at least 10 Gyr old for our most extreme allowed values of the parameters. When we use cooling curves that account for chemical fractionation and more likely values of the IMF and the bolometric correction, we find tighter limits: a white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5 Gyr). Our analysis also indicates that the halo white dwarfs almost certainly have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs, 22 page

    Thermal noise of microcantilevers in viscous fluids

    Get PDF
    International audienceWe present a simple theoretical framework to describe the thermal noise of a microscopic mechanical beam in a viscous fluid: we use the Sader approach to describe the effect of the surrounding fluid (added mass and viscous drag), and the fluctuation dissipation theorem for each flexural modes of the system to derive a general expression for the power spectrum density of fluctuations. This prediction is compared with an experimental measurement on a commercial atomic force microscopy cantilever in a frequency range covering the two first resonances. A very good agreement is found on the whole spectrum, with no adjustable parameters but the thickness of the cantilever

    Wannier-Stark ladders in one-dimensional elastic systems

    Full text link
    The optical analogues of Bloch oscillations and their associated Wannier-Stark ladders have been recently analyzed. In this paper we propose an elastic realization of these ladders, employing for this purpose the torsional vibrations of specially designed one-dimensional elastic systems. We have measured, for the first time, the ladder wave amplitudes, which are not directly accessible either in the quantum mechanical or optical cases. The wave amplitudes are spatially localized and coincide rather well with theoretically predicted amplitudes. The rods we analyze can be used to localize different frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let

    Mirror Dark Matter and Core Density of Galaxies

    Full text link
    We present a particle physics realization of a recent suggestion by Spergel and Steinhardt that collisional but dissipationless dark matter may resolve the core density problem in dark matter-dominated galaxies such as the dwarf galaxies. The realization is the asymmetric mirror universe model introduced to explain the neutrino puzzles and the microlensing anomaly. The mirror baryons are the dark matter particles with the desired properties. The time scales are right for resolution of the core density problem and formation of mirror stars (MACHOs observed in microlensing experiments). The mass of the region homogenized by Silk damping is between a dwarf and a large galaxy.Comment: 9 pages, LaTex. The present version shows that atomic scattering inherent in the mirror model can solve the core density problem without the need for an extra U(1) discussed in the original version; all conclusions are unchanged. This version is accepted for publication in Phys. Rev.

    Classifying LISA gravitational wave burst signals using Bayesian evidence

    Full text link
    We consider the problem of characterisation of burst sources detected with the Laser Interferometer Space Antenna (LISA) using the multi-modal nested sampling algorithm, MultiNest. We use MultiNest as a tool to search for modelled bursts from cosmic string cusps, and compute the Bayesian evidence associated with the cosmic string model. As an alternative burst model, we consider sine-Gaussian burst signals, and show how the evidence ratio can be used to choose between these two alternatives. We present results from an application of MultiNest to the last round of the Mock LISA Data Challenge, in which we were able to successfully detect and characterise all three of the cosmic string burst sources present in the release data set. We also present results of independent trials and show that MultiNest can detect cosmic string signals with signal-to-noise ratio (SNR) as low as ~7 and sine-Gaussian signals with SNR as low as ~8. In both cases, we show that the threshold at which the sources become detectable coincides with the SNR at which the evidence ratio begins to favour the correct model over the alternative.Comment: 21 pages, 11 figures, accepted by CQG; v2 has minor changes for consistency with accepted versio

    Anomalous quantum chaotic behavior in nanoelectromechanical structures

    Full text link
    It is predicted that for sufficiently strong electron-phonon coupling an anomalous quantum chaotic behavior develops in certain types of suspended electro-mechanical nanostructures, here comprised by a thin cylindrical quantum dot (billiard) on a suspended rectangular dielectric plate. The deformation potential and piezoelectric interactions are considered. As a result of the electron-phonon coupling between the two systems the spectral statistics of the electro-mechanic eigenenergies exhibit an anomalous behavior. If the center of the quantum dot is located at one of the symmetry axes of the rectangular plate, the energy level distributions correspond to the Gaussian Orthogonal Ensemble (GOE), otherwise they belong to the Gaussian Unitary Ensemble (GUE), even though the system is time-reversal invariant.Comment: 4 pages, pdf forma

    Gaussian random waves in elastic media

    Full text link
    Similar to the Berry conjecture of quantum chaos we consider elastic analogue which incorporates longitudinal and transverse elastic displacements with corresponding wave vectors. Based on that we derive the correlation functions for amplitudes and intensities of elastic displacements. Comparison to numerics in a quarter Bunimovich stadium demonstrates excellent agreement.Comment: 4 pages, 4 figure
    • …
    corecore