780 research outputs found

    The Feature Importance Ranking Measure

    Full text link
    Most accurate predictions are typically obtained by learning machines with complex feature spaces (as e.g. induced by kernels). Unfortunately, such decision rules are hardly accessible to humans and cannot easily be used to gain insights about the application domain. Therefore, one often resorts to linear models in combination with variable selection, thereby sacrificing some predictive power for presumptive interpretability. Here, we introduce the Feature Importance Ranking Measure (FIRM), which by retrospective analysis of arbitrary learning machines allows to achieve both excellent predictive performance and superior interpretation. In contrast to standard raw feature weighting, FIRM takes the underlying correlation structure of the features into account. Thereby, it is able to discover the most relevant features, even if their appearance in the training data is entirely prevented by noise. The desirable properties of FIRM are investigated analytically and illustrated in simulations.Comment: 15 pages, 3 figures. to appear in the Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), 200

    c-axis magnetotransport in CeCoIn5_{5}

    Full text link
    We present the results of out-of-plane electrical transport measurements on the heavy fermion superconductor CeCoIn5_{5} at temperatures from 40 mK to 400 K and in magnetic field up to 9 T. For T<T < 10 K transport measurements show that the zero-field resistivity ρc\rho_{c} changes linearly with temperature and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (nFL) behavior associated with a quantum critical point (QCP). The longitudinal magnetoresistance (LMR) of CeCoIn5_{5} for fields applied parallel to the c-axis is negative and scales as B/(T+T∗)B/(T+T^{*}) between 50 and 100 K, revealing the presence of a single-impurity Kondo energy scale T∗∌2T^{*} \sim 2 K. Beginning at 16 K a small positive LMR feature is evident for fields less than 3 tesla that grows in magnitude with decreasing temperature. For higher fields the LMR is negative and increases in magnitude with decreasing temperature. This sizable negative magnetoresistance scales as B2/TB{^2}/T from 2.6 K to roughly 8 K, and it arises from an extrapolated residual resistivity that becomes negative and grows quadratically with field in the nFL temperature regime. Applying a magnetic field along the c-axis with B >> Bc2_{c2} restores Fermi-liquid behavior in ρc(T)\rho_{c}(T) at TT less than 130 mK. Analysis of the T2T{^2} resistivity coefficient's field-dependence suggests that the QCP in CeCoIn5_{5} is located \emph{below} the upper critical field, inside the superconducting phase. These data indicate that while high-TT c-axis transport of CeCoIn5_{5} exhibits features typical for a heavy fermion system, low-TT transport is governed both by spin fluctuations associated with the QCP and Kondo interactions that are influenced by the underlying complex electronic structure intrinsic to the anisotropic CeCoIn5_{5} crystal structure

    Anisotropic conductivity of Nd_{1.85}Ce_{0.15}CuO_{4-\delta} films at submillimeter wavelengths

    Full text link
    The anisotropic conductivity of thin Nd1.85_{1.85}Ce0.15_{0.15}CuO4−ή_{4-\delta} films was measured in the frequency range 8 cm−1<Îœ<^{-1}<\nu < 40 cm−1^{-1} and for temperatures 4 K <T<300<T<300 K. A tilted sample geometry allowed to extract both, in-plane and c-axis properties. The in-plane quasiparticle scattering rate remains unchanged as the sample becomes superconducting. The temperature dependence of the in-plane conductivity is reasonably well described using the Born limit for a d-wave superconductor. Below T_{{\rm C}%} the c-axis dielectric constant Ï”1c\epsilon_{1c} changes sign at the screened c-axis plasma frequency. The temperature dependence of the c-axis conductivity closely follows the linear in T behavior within the plane.Comment: 4 pages, 4 figure

    Topological Defects in Nematic Droplets of Hard Spherocylinders

    Full text link
    Using computer simulations we investigate the microscopic structure of the singular director field within a nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an overall topological charge, the particles are either confined to a two-dimensional circular cavity with homeotropic boundary or to the surface of a three-dimensional sphere. Both systems exhibit half-integer topological point defects. The isotropic defect core has a radius of the order of one particle length and is surrounded by free-standing density oscillations. The effective interaction between two defects is investigated. All results should be experimentally observable in thin sheets of colloidal liquid crystals.Comment: 13 pages, 16 figures, Phys. Rev.

    Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    Get PDF
    We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of around 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure

    Characteristics and outcome of pediatric renal cell carcinoma patients registered in the International Society of Pediatric Oncology (SIOP) 93‐01, 2001 and UK‐IMPORT database: A report of the SIOP‐Renal Tumor Study Group

    Get PDF
    In children, renal cell carcinoma (RCC) is rare. This study is the first report of pediatric patients with RCC registered by the International Society of Pediatric Oncology‐Renal Tumor Study Group (SIOP‐RTSG). Pediatric patients with histologically confirmed RCC, registered in SIOP 93‐01, 2001 and UK‐IMPORT databases, were included. Event‐free survival (EFS) and overall survival (OS) were analyzed using the Kaplan‐Meier method. Between 1993 and 2019, 122 pediatric patients with RCC were registered. Available detailed data (n = 111) revealed 56 localized, 30 regionally advanced, 25 metastatic and no bilateral cases. Histological classification according to World Health Organization 2004, including immunohistochemical and molecular testing for transcription factor E3 (TFE3) and/or EB (TFEB) translocation, was available for 65/122 patients. In this group, the most common histological subtypes were translocation type RCC (MiT‐RCC) (36/64, 56.3%), papillary type (19/64, 29.7%) and clear cell type (4/64, 6.3%). One histological subtype was not reported. In the remaining 57 patients, translocation testing could not be performed, or TFE‐cytogenetics and/or immunohistochemistry results were missing. In this group, the most common RCC histological subtypes were papillary type (21/47, 44.7%) and clear cell type (11/47, 23.4%). Ten histological subtypes were not reported. Estimated 5‐year (5y) EFS and 5y OS of the total group was 70.5% (95% CI = 61.7%‐80.6%) and 84.5% (95% CI = 77.5%‐92.2%), respectively. Estimated 5y OS for localized, regionally advanced, and metastatic disease was 96.8%, 92.3%, and 45.6%, respectively. In conclusion, the registered pediatric patients with RCC showed a reasonable outcome. Survival was substantially lower for patients with metastatic disease. This descriptive study stresses the importance of full, prospective registration including TFE‐testing

    Optical symmetries and anisotropic transport in high-Tc superconductors

    Full text link
    A simple symmetry analysis of in-plane and out-of-plane transport in a family of high temperature superconductors is presented. It is shown that generalized scaling relations exist between the low frequency electronic Raman response and the low frequency in-plane and out-of-plane conductivities in both the normal and superconducting states of the cuprates. Specifically, for both the normal and superconducting state, the temperature dependence of the low frequency B1gB_{1g} Raman slope scales with the c−c-axis conductivity, while the B2gB_{2g} Raman slope scales with the in-plane conductivity. Comparison with experiments in the normal state of Bi-2212 and Y-123 imply that the nodal transport is largely doping independent and metallic, while transport near the BZ axes is governed by a quantum critical point near doping p∌0.22p\sim 0.22 holes per CuO2_{2} plaquette. Important differences for La-214 are discussed. It is also shown that the c−c- axis conductivity rise for Tâ‰ȘTcT\ll T_{c} is a consequence of partial conservation of in-plane momentum for out-of-plane transport.Comment: 16 pages, 8 Figures (3 pages added, new discussion on pseudogap and charge ordering in La214
    • 

    corecore