55 research outputs found

    Neuroblastoma Integrins

    Get PDF

    Predictive Genomic Biomarkers of Hormonal Therapy Versus Chemotherapy Benefit in Metastatic Castration-resistant Prostate Cancer

    Get PDF
    Drug development; Predictive biomarkers; Prostate cancerDesarrollo de fårmacos; Biomarcadores predictivos; Cåncer de próstataDesenvolupament de fàrmacs; Biomarcadors predictius; Càncer de pròstataBackground Biomarkers predicting second-generation novel hormonal therapy (NHT) benefit relative to taxanes are critical for optimized treatment decisions for metastatic castration-resistant prostate cancer (mCRPC) patients. These associations have not been reported simultaneously for common mCRPC genomic biomarkers. Objective To evaluate predictive associations of common genomic aberrations in mCRPC using an established comprehensive genomic profiling (CGP) system. Design, setting, and participants A retrospective cohort study used data from a deidentified US-based clinicogenomic database comprising patients treated in routine clinical practice between 2011 and 2020, evaluated with Foundation Medicine CGP in tissue biopsies obtained around the time of treatment decision. The main cohort included 180 NHT and 179 taxane lines of therapy (LOTs) from 308 unique patients. The sequential cohort comprised a subset of the main cohort NHT LOTs immediately followed by taxane from 55 unique patients. Outcome measurements and statistical analysis Prostate-specific antigen (PSA) response, time to next treatment (TTNT), and overall survival (OS) were assessed. Main cohort analyses were adjusted for known treatment assignment biases via inverse probability of treatment weighting (IPTW) in treatment interaction models. Results and limitations In the main cohort, patients with AR amplification (ARamp) or PTEN aberrations (PTENalt) had worse relative PSA response on NHT versus taxanes compared with patients without. Patients with ARamp, PTENalt, or RB1 aberrations (RB1alt) also had worse relative TTNT and OS on NHT but not on taxanes. In multivariable models for TTNT and OS adjusted via IPTW, ARamp, PTENalt, and RB1alt were shown as poor prognostic factors overall and demonstrated significant treatment interactions, indicating reduced hazards of therapy switch and death on taxanes versus NHT. Consistent associations favoring increased benefit from subsequent taxane despite prior NHT treatment line were observed only for ARamp in the sequential cohort, in which very few patients had RB1alt for assessment. Conclusions ARamp status is a candidate biomarker to predict poor effectiveness of NHT relative to taxanes in mCRPC in scenarios where both options are considered

    Analytical Validation and Capabilities of the Epic CTC Platform: Enrichment-Free Circulating Tumour Cell Detection and Characterization

    Get PDF
    The Epic Platform was developed for the unbiased detection and molecular characterization of circulating tumour cells (CTCs). Here, we report assay performance data, including accuracy, linearity, specificity and intra/inter-assay precision of CTC enumeration in healthy donor (HD) blood samples spiked with varying concentrations of cancer cell line controls (CLCs). Additionally, we demonstrate clinical feasibility for CTC detection in a small cohort of metastatic castrate-resistant prostate cancer (mCRPC) patients. The Epic Platform demonstrated accuracy, linearity and sensitivity for the enumeration of all CLC concentrations tested. Furthermore, we established the precision between multiple operators and slide staining batches and assay specificity showing zero CTCs detected in 18 healthy donor samples. In a clinical feasibility study, at least one traditional CTC/mL (CK+, CD45-, and intact nuclei) was detected in 89 % of 44 mCRPC samples, whereas 100 % of samples had CTCs enumerated if additional CTC subpopulations (CK-/CD45- and CK+ apoptotic CTCs) were included in the analysis. In addition to presenting Epic Platform’s performance with respect to CTC enumeration, we provide examples of its integrated downstream capabilities, including protein biomarker expression and downstream genomic analyses at single cell resolution

    Genomic Biomarkers and Genome-Wide Loss-of-Heterozygosity Scores in Metastatic Prostate Cancer Following Progression on Androgen-Targeting Therapies

    Get PDF
    Genomic biomarkers; Prostate cancer; Targeting therapiesBiomarcadores genómicos; Cåncer de próstata; Terapias dirigidasBiomarcadors genòmics; Càncer de pròstata; Teràpies dirigidesPURPOSE To study the impact of standard-of-care hormonal therapies on metastatic prostate cancer (mPC) clinical genomic profiles in real-world practice, with a focus on homologous recombination-repair (HRR) genes. PATIENTS AND METHODS Targeted next-generation sequencing of 1,302 patients with mPC was pursued using the FoundationOne or FoundationOne CDx assays. Longitudinal clinical data for correlative analysis were curated via technology-enabled abstraction of electronic health records. Genomic biomarkers, including individual gene aberrations and genome-wide loss-of-heterozygosity (gLOH) scores, were compared according to biopsy location and time of sample acquisition (androgen deprivation therapy [ADT]-naïve, ADT-progression and post-ADT, and novel hormonal therapies [NHT]-progression), using chi-square and Wilcoxon rank-sum tests. Multivariable analysis used linear regression. False-discovery rate of 0.05 was applied to account for multiple comparisons. RESULTS Eight hundred forty (65%), 132 (10%), and 330 (25%) biopsies were ADT-naïve, ADT-progression, and NHT-progression, respectively. Later-stage samples were enriched for AR, MYC, TP53, PTEN, and RB1 aberrations (all adjusted P values < .05), but prevalence of HRR-related BRCA2, ATM, and CDK12 aberrations remained stable. Primary and metastatic ADT-naïve biopsies presented similar prevalence of TP53 (36% v 31%) and BRCA2 (8% v 7%) aberrations; 81% of ADT-naïve BRCA2-mutated samples presented BRCA2 biallelic loss. Higher gLOH scores were independently associated with HRR genes (BRCA2, PALB2, and FANCA), TP53, and RB1 aberrations, and with prior exposure to hormonal therapies in multivariable analysis. CONCLUSION Prevalence of HRR-gene aberrations remains stable along mPC progression, supporting the use of diagnostic biopsies to guide poly (ADP-ribose) polymerase inhibitor treatment in metastatic castration-resistant prostate cancer. gLOH scores increase with emerging resistance to hormonal therapies, independently of individual HRR gene mutations

    千葉大学泌尿器科第1回同門会発表

    Get PDF
    BackgroundWhile programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) checkpoint inhibitors have activity in a proportion of patients with advanced bladder cancer, strongly predictive and prognostic biomarkers are still lacking. In this study, we evaluated PD-L1 protein expression on circulating tumor cells (CTCs) isolated from patients with muscle invasive (MIBC) and metastatic (mBCa) bladder cancer and explore the prognostic value of CTC PD-L1 expression on clinical outcomes.MethodsBlood samples from 25 patients with MIBC or mBCa were collected at UCSF and shipped to Epic Sciences. All nucleated cells were subjected to immunofluorescent (IF) staining and CTC identification by fluorescent scanners using algorithmic analysis. Cytokeratin expressing (CK)+ and (CK)-CTCs (CD45-, intact nuclei, morphologically distinct from WBCs) were enumerated. A subset of patient samples underwent genetic characterization by fluorescence in situ hybridization (FISH) and copy number variation (CNV) analysis.ResultsCTCs were detected in 20/25 (80 %) patients, inclusive of CK+ CTCs (13/25, 52 %), CK-CTCs (14/25, 56 %), CK+ CTC Clusters (6/25, 24 %), and apoptotic CTCs (13/25, 52 %). Seven of 25 (28 %) patients had PD-L1+ CTCs; 4 of these patients had exclusively CK-/CD45-/PD-L1+ CTCs. A subset of CTCs were secondarily confirmed as bladder cancer via FISH and CNV analysis, which revealed marked genomic instability. Although this study was not powered to evaluate survival, exploratory analyses demonstrated that patients with high PD-L1+/CD45-CTC burden and low burden of apoptotic CTCs had worse overall survival.ConclusionsCTCs are detectable in both MIBC and mBCa patients. PD-L1 expression is demonstrated in both CK+ and CK-CTCs in patients with mBCa, and genomic analysis of these cells supports their tumor origin. Here we demonstrate the ability to identify CTCs in patients with advanced bladder cancer through a minimally invasive process. This may have the potential to guide checkpoint inhibitor immune therapies that have been established to have activity, often with durable responses, in a proportion of these patients

    The Death Effector Domains of Caspase-8 Induce Terminal Differentiation

    Get PDF
    The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence
    • …
    corecore