3 research outputs found

    Formation of rhyolite at the Okataina Volcanic Complex, New Zealand: New insights from analysis of quartz clusters in plutonic lithics

    No full text
    Granitoid lithic clasts from the 0.7 ka Kaharoa eruption at the Tarawera volcano (Okataina Volcanic Complex, Taupo Volcanic Zone, New Zealand) provide insight into the processes of rhyolite formation. The plutonic lithic clasts of the Kaharoa eruption consist of (1) quartz phenocrysts, which are often grouped into clusters of two to eight quartz grains, (2) plagioclase phenocrysts (mostly ∼An \u3c inf\u3e 40 with up to An \u3c inf\u3e 60 cores), and (3) interstitial alkali feldspar. Quartz orientations obtained through electron backscatter diffraction (EBSD) methods show that 78% of the 82 analyzed clusters have at least one pair of quartz grains with the dominant dipyramidal faces matched. Variations in cathodoluminescence (CL) zoning patterns of the quartz suggest that quartz clusters came together after initial crystal growth and that many quartz crystals were subject to one or more resorption events. The process of quartz crystals with different magmatic histories coming together into common relative orientations to form clusters is indicative of oriented quartz synneusis and suggests a history of crystal accumulation. The quartz clusters are interpreted to have formed as part of a crystal cumulate mush within a shallow magma chamber where quartz crystals rotated into contact along their dominant dipyramidal faces during hindered settling and/or compaction. The preservation of oriented quartz clusters from the Kaharoa plutonic lithics thus provides evidence for synchronous, shallow pluton formation from a cumulate mush during active silicic volcanism. This result is consistent with models whereby meltrich, high-silica rhyolite formation occurs via interstitial melt extraction from a low-silica rhyolite mush in the shallow crust

    Atmospheric measurements of the terrestrial O2 : CO2 exchange ratio of a midlatitude forest

    No full text
    Measurements of atmospheric O2 have been used to quantify large-scale fluxes of carbon between the oceans, atmosphere and land since 1992 (Keeling and Shertz, 1992). With time, datasets have grown and estimates of fluxes have become more precise, but a key uncertainty in these calculations is the exchange ratio of O2 and CO2 associated with the net land carbon sink (B). We present measurements of atmospheric O2 and CO2 collected over a 6-year period from a mixed deciduous forest in central Massachusetts, USA (42.537 N, 72.171 W). Using a differential fuel-cellbased instrument for O2 and a nondispersive infrared analyzer for CO2, we analyzed airstreams collected within and 5m above the forest canopy. Averaged over the entire period of record, we find these two species covary with a slope of -1:081±0:007 mol of O2 per mole of CO2 (the mean and standard error of 6 h periods). If we limit the data to values collected on summer days within the canopy, the slope is -1:03±0:01. These are the conditions in which biotic influences are most likely to dominate. This result is significantly different from the value of -1.1 widely used in O2-based calculations of the global carbon budget, suggesting the need for a deeper understanding of the exchange ratios of the various fluxes and pools comprising the net sink

    Atmospheric blocking drives recent albedo change across the western Greenland ice sheet percolation zone

    No full text
    Greenland Ice Sheet (GrIS) albedo has decreased over recent decades, contributing to enhanced surface melt and mass loss. However, it remains unclear whether GrIS darkening is due to snow grain size increases, higher concentrations of light-absorbing impurities (LAIs), or a combination. Here, we assess albedo controls in the western GrIS percolation zone using in situ albedo, LAI, and grain size measurements. We find a significant correlation between albedo and snow grain size (p \u3c 0.01), but not with LAIs. Modeling corroborates that LAI concentrations are too low to significantly reduce albedo, but larger grain sizes could reduce albedo by at least ∼3%. Strong atmospheric blocking increases grain sizes and reduces albedo through increased surface temperature, fewer storms, and higher incoming shortwave radiation. These findings clarify the mechanisms by which anomalously strong blocking contributed to recent GrIS albedo decline and mass loss, highlighting the importance of improving projections of future blocking
    corecore