40 research outputs found

    Endothelial Cell Processing and Alternatively Spliced Transcripts of Factor VIII: Potential Implications for Coagulation Cascades and Pulmonary Hypertension

    Get PDF
    Background: Coagulation factor VIII (FVIII) deficiency leads to haemophilia A. Conversely, elevated plasma levels are a strong predictor of recurrent venous thromboemboli and pulmonary hypertension phenotypes in which in situ thromboses are implicated. Extrahepatic sources of plasma FVIII are implicated, but have remained elusive. Methodology/Principal Findings: Immunohistochemistry of normal human lung tissue, and confocal microscopy, flow cytometry, and ELISA quantification of conditioned media from normal primary endothelial cells were used to examine endothelial expression of FVIII and coexpression with von Willebrand Factor (vWF), which protects secreted FVIII heavy chain from rapid proteloysis. FVIII transcripts predicted from database mining were identified by rt-PCR and sequencing. FVIII mAb-reactive material was demonstrated in CD31+ endothelial cells in normal human lung tissue, and in primary pulmonary artery, pulmonary microvascular, and dermal microvascular endothelial cells. In pulmonary endothelial cells, this protein occasionally colocalized with vWF, centered on Weibel Palade bodies. Pulmonary artery and pulmonary microvascular endothelial cells secreted low levels of FVIII and vWF to conditioned media, and demonstrated cell surface expression of FVIII and vWF Ab–reacting proteins compared to an isotype control. Four endothelial splice isoforms were identified. Two utilize transcription start sites in alternate 59 exons within the int22h-1 repeat responsible for intron 2

    The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling.

    Get PDF
    Blood vessel stability is essential for embryonic development; in the adult, many diseases are associated with loss of vascular integrity. The ETS transcription factor ERG drives expression of VE-cadherin and controls junctional integrity. We show that constitutive endothelial deletion of ERG (Erg(cEC-KO)) in mice causes embryonic lethality with vascular defects. Inducible endothelial deletion of ERG (Erg(iEC-KO)) results in defective physiological and pathological angiogenesis in the postnatal retina and tumors, with decreased vascular stability. ERG controls the Wnt/β-catenin pathway by promoting β-catenin stability, through signals mediated by VE-cadherin and the Wnt receptor Frizzled-4. Wnt signaling is decreased in ERG-deficient endothelial cells; activation of Wnt signaling with lithium chloride, which stabilizes β-catenin levels, corrects vascular defects in Erg(cEC-KO) embryos. Finally, overexpression of ERG in vivo reduces permeability and increases stability of VEGF-induced blood vessels. These data demonstrate that ERG is an essential regulator of angiogenesis and vascular stability through Wnt signaling.This work was funded by grants from the British Heart Foundation (PG/09/096 and RG/11/17/29256). A.V.S. is a recipient of a National Lung and Heart Institute Foundation Studentship. I.M.A. is a recipient of a DOC-fFORTE fellowship of the Austrian Academy of Sciences at the London Research Institute.This paper was published by Cell Press in Developmental Cell (GM Birdsey, AV Shah, N Dufton, LE Reynolds, LO Almagro, Y Yang, IM Aspalter, ST Khan, JC Mason, E Dejana, B Göttgens, K Hodivala-Dilke, Gerhardt, RH Adams, AM Randi, Developmental Cell 2015, 32, 82-96

    The Transcription Factor ERG Regulates Super-Enhancers Associated with an Endothelial-Specific Gene Expression Program

    Get PDF
    Rationale: The ETS transcription factor (TF) ERG is essential for endothelial homeostasis, driving expression of lineage genes and repressing pro-inflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG’s homeostatic function is lineage-specific, since aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). Objective: To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. Methods and Results: Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) in human umbilical vein endothelial cells (HUVEC) showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4, CLDN5, VWF and CDH5. Comparison between HUVEC and prostate cancer TMPRSS2:ERG fusion-positive VCaP cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and Mediator subunit MED1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 and AP-1 is significantly lower compared to super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in EC and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms (SNPs) from genome-wide association studies (GWAS) lie within noncoding regions and perturb TF recognition sequences in relevant cell types. Analysis of GWAS data shows significant enrichment of risk variants for CVD and other diseases, at ERG endothelial enhancers and superenhancers. Conclusions: The TF ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of CVD-associated SNPs at ERG super-enhancers suggests that ERGdependent transcription modulates disease risk.This work was funded by grants from the British Heart Foundation (RG/11/17/29256; RG/17/4/32662; FS/15/65/32036; PG/17/33/32990) and Cancer Research U

    Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    Get PDF
    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1(-/-) mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis.National Heart and Lung Institute Foundation UK charity studentship: (Charity no. 1048073); National Institute for Health Research (NIHR); Biomedical Research Centre; Imperial College Healthcare NHS; Trust and Imperial College London

    Vascular Endothelial Growth Factor Receptor-2 Couples Cyclo-Oxygenase-2 with Pro-Angiogenic Actions of Leptin on Human Endothelial Cells

    Get PDF
    The adipocyte-derived hormone leptin influences the behaviour of a wide range of cell types and is now recognised as a pro-angiogenic and pro-inflammatory factor. In the vasculature, these effects are mediated in part through its direct leptin receptor (ObRb)-driven actions on endothelial cells (ECs) but the mechanisms responsible for these activities have not been established. In this study we sought to more fully define the molecular links between inflammatory and angiogenic responses of leptin-stimulated human ECs../Akt/COX-2 signalling axis is required for leptin's pro-angiogenic actions and that this is regulated upstream by ObRb-dependent activation of VEGFR2. These studies identify a new function for VEGFR2 as a mediator of leptin-stimulated COX-2 expression and angiogenesis and have implications for understanding leptin's regulation of the vasculature in both non-obese and obese individuals

    Peroxisomes proliferate

    No full text
    No abstract available

    Correction of an enzyme trafficking defect in hereditary kidney stone disease in vitro.

    No full text
    In normal human hepatocytes, the intermediary-metabolic enzyme alanine:glyoxylate aminotransferase (AGT) is located within the peroxisomes. However, in approx. one-third of patients suffering from the hereditary kidney stone disease primary hyperoxaluria type 1, AGT is mistargeted to the mitochondria. AGT mistargeting results from the synergistic interaction between a common P11L (Pro11-->Leu) polymorphism and a disease-specific G170R mutation. The polymorphism generates a functionally weak mitochondrial targeting sequence, the efficiency of which is increased by the mutation. The two substitutions together, but not in isolation, inhibit AGT dimerization, highlighting the different structural requirements of the peroxisomal and mitochondrial protein-import machineries. In the present study, we show that treatments known to increase the stability of proteins non-specifically (i.e. lowering the temperature from 37 to 30 degrees C or by the addition of glycerol) completely normalize the intracellular targeting of mutant AGT expressed in transfected COS cells. On the other hand, treatments known to decrease protein stability (e.g. increasing the temperature from 37 to 42 degrees C) exacerbate the targeting defect. Neither of the treatments affects the relative efficiencies of the peroxisomal and mitochondrial protein-import pathways intrinsically. Results are discussed in the light of the known structural requirements of the two protein trafficking pathways and the formulation of possible treatment strategies for primary hyperoxaluria type 1
    corecore