47 research outputs found

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors reduce the risk of perioperative stroke and mortality after carotid endarterectomy

    Get PDF
    ObjectiveThere is increasing evidence that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) reduce cardiovascular and cerebrovascular events through anti-inflammatory, plaque stabilization, and neuroprotective effects independent of lipid lowering. This study was designed to investigate whether statin use reduces the incidence of perioperative stroke and mortality among patients undergoing carotid endarterectomy (CEA).MethodsAll patients undergoing CEA from 1994 to 2004 at a large academic medical center were retrospectively reviewed. The independent association of statin use and perioperative morbidity was assessed via multivariate logistic regression analysis.ResultsCEA was performed by 13 surgeons on 1566 patients (987 men and 579 women; mean age, 72 ± 10 years), including 1440 (92%) isolated and 126 (8%) combined CEA/coronary artery bypass grafting procedures. The indication for CEA was symptomatic disease in 660 (42%) cases. Six hundred fifty-seven (42%) patients received a statin medication for at least 1 week before surgery. Statin use was associated with a reduction in perioperative strokes (1.2% vs 4.5%; P < .01), transient ischemic attacks (1.5% vs 3.6%; P < .01), all-cause mortality (0.3% vs 2.1%; P < .01), and median (interquartile range) length of hospitalization (2 days [2-5 days] vs 3 days [2-7 days]; P < .05). Adjusting for all demographics and comorbidities in multivariate analysis, statin use independently reduced the odds of stroke threefold (odds ratio [95% confidence interval], 0.35 [0.15-0.85]; P < .05) and death fivefold (odds ratio [95% confidence interval], 0.20 [0.04-0.99]; P < .05).ConclusionsThese data suggest that perioperative statin use may reduce the incidence of cerebrovascular events and mortality among patients undergoing CEA

    Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma

    Get PDF
    Glioblastoma (GBM) is one of the most common, deadly, and difficult-to-treat adult brain tumors. Surgical removal of the tumor, followed by radiotherapy (RT) and temozolomide (TMZ) administration, is the current treatment modality, but this regimen only modestly improves overall patient survival. Invasion of cells into the surrounding healthy brain tissue prevents complete surgical resection and complicates treatment strategies with the goal of preserving neurological function. Despite significant efforts to increase our understanding of GBM, there have been relatively few therapeutic advances since 2005 and even fewer treatments designed to effectively treat recurrent tumors that are resistant to therapy. Thus, while there is a pressing need to move new treatments into the clinic, emerging evidence suggests that key features unique to GBM location and biology, the blood-brain barrier (BBB) and intratumoral molecular heterogeneity, respectively, stand as critical unresolved hurdles to effective therapy. Notably, genomic analyses of GBM tissues has led to the identification of numerous gene alterations that govern cell growth, invasion and survival signaling pathways; however, the drugs that show pre-clinical potential against signaling pathways mediated by these gene alterations cannot achieve effective concentrations at the tumor site. As a result, identifying BBB-penetrating drugs and utilizing new and safer methods to enhance drug delivery past the BBB has become an area of intensive research. Repurposing and combining FDA-approved drugs with evidence of penetration into the central nervous system (CNS) has also seen new interest for the treatment of both primary and recurrent GBM. In this review, we discuss emerging methods to strategically enhance drug delivery to GBM and repurpose currently-approved and previously-studied drugs using rational combination strategies

    Carotid artery aneurysm resulting in myxedema coma

    Get PDF
    Intra-sellar aneurysms are a rare, but important consideration when evaluating pituitary masses. Identification of aneurysms is critical to appropriate treatment and avoiding perilous consequences. These vascular aneurysms can result in severe endocrine dysfunction due to mass effect, stripping of the vascular supply to the pituitary, or hemorrhage. Here we describe a novel case of spontaneous myxedema coma and pituitary apoplexy secondary to a large internal carotid artery aneurysm

    Emerging Insights into Barriers to Effective Brain Tumor Therapeutics

    No full text
    There is great promise that ongoing advances in the delivery of therapeutics to the central nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-biology will provide new, more effective therapies. Brain tumors that form from brain cells, as opposed to those that come from other parts of the body, rarely metastasize outside of the central nervous system. Instead, the tumor cells invade deep into the brain itself, causing disruption in brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with the most aggressive treatments and often with devastating neurological consequences. Current treatments include maximal safe surgical removal or biopsy followed by radiation and chemotherapy to address the residual tumor mass and invading tumor cells. However, delivering effective and sustained treatments to these invading cells without damaging healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine and viral and cell-based therapies. New treatment strategies, particularly those directed against the invasive component of this devastating CNS disease, are sorely needed. In this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and explore three critical barriers to improving therapeutic delivery to invasive brain tumors, specifically, the neurovascular unit as it relates to the blood brain barrier, the extracellular space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and instability in association with the treatment efficacy barrier, and (3) identify promising new therapeutic delivery approaches that have the potential to address these barriers and create sustained, meaningful efficacy against GBM

    Systematic Evaluation of Light-Activatable Biohybrids for Anti-Glioma Photodynamic Therapy

    No full text
    Photosensitizing biomolecules (PSBM) represent a new generation of light-absorbing compounds with improved optical and physicochemical properties for biomedical applications. Despite numerous advances in lipid-, polymer-, and protein-based PSBMs, their effective use requires a fundamental understanding of how macromolecular structure influences the physicochemical and biological properties of the photosensitizer. Here, we prepared and characterized three well-defined PSBMs based on a clinically used photosensitizer, benzoporphyrin derivative (BPD). The PSBMs include 16:0 lysophosphocholine-BPD (16:0 Lyso PC-BPD), distearoyl-phosphoethanolamine-polyethylene-glycol-BPD (DSPE-PEG-BPD), and anti-EGFR cetuximab-BPD (Cet-BPD). In two glioma cell lines, DSPE-PEG-BPD exhibited the highest singlet oxygen yield but was the least phototoxic due to low cellular uptake. The 16:0 Lyso PC-BPD was most efficient in promoting cellular uptake but redirected BPD’s subcellular localization from mitochondria to lysosomes. At 24 h after incubation, proteolyzed Cet-BPD was localized to mitochondria and effectively disrupted the mitochondrial membrane potential upon light activation. Our results revealed the variable trafficking and end effects of PSBMs, providing valuable insights into methods of PSBM evaluation, as well as strategies to select PSBMs based on subcellular targets and cytotoxic mechanisms. We demonstrated that biologically informed combinations of PSBMs to target lysosomes and mitochondria, concurrently, may lead to enhanced therapeutic effects against gliomas.https://doi.org/10.3390/jcm809126

    Nanoparticle-assisted, image-guided laser interstitialthermal therapy for cancer treatment

    No full text
    Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light–tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT.https://doi.org/10.1002/wnan.182

    Surgical outcomes using a medial-to-lateral endonasal endoscopic approach to pituitary adenomas invading the cavernous sinus

    Full text link
    OBJECT This study details the extent of resection and complications associated with endonasal endoscopic surgery for pituitary tumors invading the cavernous sinus (CS) using a moderately aggressive approach to maximize extent of resection through the medial CS wall while minimizing the risk of cranial neuropathy and blood loss. Tumor in the medial CS was aggressively pursued while tumor in the lateral CS was debulked in preparation for radiosurgery. METHODS A prospective surgical database of consecutive endonasal pituitary surgeries with verified CS invasion on intraoperative visual inspection was reviewed. The extent of resection as a whole and within the CS was assessed by an independent neuroradiologist using pre- and postoperative Knosp-Steiner (KS) categorization and volumetrics of the respective MR images. The extent of resection and clinical outcomes were compared for medial (KS 1-2) and lateral (KS 3-4) lesions. RESULTS Thirty-six consecutive patients with pituitary adenomas involving the CS who had surgery via an endonasal endoscopic approach were identified. The extent of resection was 84.6% for KS 1-2 and 66.6% for KS 3-4 (p = 0.04). The rate of gross-total resection was 53.8% for KS 1-2 and 8.7% for KS 3-4 (p = 0.0006). Six patients (16.7%) had preoperative cranial neuropathies, and all 6 had subjective improvement after surgery. Surgical complications included 2 transient postoperative cranial neuropathies (5.6%), 1 postoperative CSF leak (2.8%), 1 reoperation for mucocele (2.8%), and 1 infection (2.8%). CONCLUSIONS The endoscopic endonasal "medial-to-lateral" approach permits safe debulking of tumors in the medial and lateral CS. Although rates of gross-total resection are moderate, particularly in the lateral CS, the risk of permanent cranial neuropathy is extremely low and there is a high chance of improvement of preexisting deficits. This approach can also facilitate targeting for postoperative radiosurgery

    MR-guided transcranial focused ultrasound safely enhances interstitial dispersion of large polymeric nanoparticles in the living brain.

    No full text
    Generating spatially controlled, non-destructive changes in the interstitial spaces of the brain has a host of potential clinical applications, including enhancing the delivery of therapeutics, modulating biological features within the tissue microenvironment, altering fluid and pressure dynamics, and increasing the clearance of toxins, such as plaques found in Alzheimer's disease. Recently we demonstrated that ultrasound can non-destructively enlarge the interstitial spaces of the brain ex vivo. The goal of the current study was to determine whether these effects could be reproduced in the living brain using non-invasive, transcranial MRI-guided focused ultrasound (MRgFUS). The left striatum of healthy rats was treated using MRgFUS. Computer simulations facilitated treatment planning, and targeting was validated using MRI acoustic radiation force impulse imaging. Following MRgFUS treatments, Evans blue dye or nanoparticle probes were infused to assess changes in the interstitial space. In MRgFUS-treated animals, enhanced dispersion was observed compared to controls for 70 nm (12.8 ± 0.9 mm3 vs. 10.6 ± 1.0 mm3, p = 0.01), 200 nm (10.9 ± 1.4 mm3 vs. 7.4 ± 0.7 mm3, p = 0.01) and 700 nm (7.5 ± 0.4 mm3 vs. 5.4 ± 1.2 mm3, p = 0.02) nanoparticles, indicating enlargement of the interstitial spaces. No evidence of significant histological or electrophysiological injury was identified. These findings suggest that transcranial ultrasound can safely and effectively modulate the brain interstitium and increase the dispersion of large therapeutic entities such as particulate drug carriers or modified viruses. This has the potential to expand the therapeutic uses of MRgFUS
    corecore